求與雙曲線有共同漸近線,且過點(-3,)的雙曲線方程;
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知三點、(-2,0)、(2,0)。
(1)求以、為焦點且過點的橢圓的標準方程;
(2)求以、為頂點且以(1)中橢圓左、右頂點為焦點的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓的方程為:直線過點(1,2),且與圓交于、兩點,若求直線的方程;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

中,,邊上的中線長之和為30,則的重心的軌跡方程( )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知中心在坐標軸原點O的橢圓C經過點A(1,),且點F(-1,0)為其左焦點.
(I)求橢圓C的離心率;
(II)試判斷以AF為直徑的圓與以橢圓長軸為直徑的圓的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓)與雙曲線,)有相同的焦點,若、的等比中項,的等差中項,則橢圓的離心率是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知方向向量為v=(1,)的直線l過點(0,-2)和橢圓C:
的焦點,且橢圓C的中心關于直線l的對稱點在橢圓C的右準線上.
(Ⅰ)求橢圓C的方程;(Ⅱ)是否存在過點E(-2,0)的直線m交橢圓C于點M、N,滿足cot∠MON ≠0(O為原點).若存在,求直線m的方程;若不存
在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點在曲線上,為曲線在點處的切線的傾斜角,則的取值范圍是(     )
A.[0,)B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線和點,過點P的直線與拋物線交與兩點,設點P剛好為弦的中點。
(1)求直線的方程
(2)若過線段上任一(不含端點)作傾斜角為的直線交拋物線于,類比圓中的相交弦定理,給出你的猜想,若成立,給出證明;若不成立,請說明理由。
(3)過P作斜率分別為的直線,交拋物線于交拋物線于,是否存在使得(2)中的猜想成立,若存在,給出滿足的條件。若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案