6.下列計(jì)算錯(cuò)誤的是( 。
A.${∫}_{-π}^{π}$sinxdx=0B.${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx=2${∫}_{0}^{\frac{π}{2}}$cosxdx
C.${∫}_{-2}^{2}$$\sqrt{4-{x}^{2}}$dx=2πD.${∫}_{1}^{2}$$\frac{1}{x}$dx=$\frac{3}{4}$

分析 利用函數(shù)定積分的性質(zhì)和幾何意義可以判斷A、B和C是正確的,計(jì)算D的結(jié)果為ln2,利用排除法可得選D.

解答 解:y=sinx是奇函數(shù),奇函數(shù)在對(duì)稱區(qū)間的定積分為0,所以A正確;
y=cosx是偶函數(shù),偶函數(shù)在對(duì)稱區(qū)間積分值是在半?yún)^(qū)間積分值的2倍,所以B正確;
${∫}_{-2}^{2}\sqrt{4-{x}^{2}}dx$的幾何意義是以(0,0)為圓心,以2為半徑的圓的x周上半部分,是2π,所以C正確;
${∫}_{1}^{2}\frac{1}{x}dx$=$lnx{丨}_{1}^{2}$ln2,所以D不正確.
故選:D.

點(diǎn)評(píng) 本題主要考察函數(shù)定積分的性質(zhì)、幾何意義和計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知命題p:方程x2-2mx+1=0有兩個(gè)不等的正實(shí)數(shù)根,命題q:函數(shù)f(x)=logmx,滿足f(2m2+1)>f(5m-1),如果p或q為真命題,p且q為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+y≥2}\\{x-y≤2}\\{0≤y≤3}{\;}\end{array}\right.$,則目標(biāo)函數(shù)z=-$\frac{3}{2}$x-y的最大值為$-\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知復(fù)數(shù)z滿足(2+i)z=5i(其中i是虛數(shù)單位,滿足i2=-1),則復(fù)數(shù)z的共軛復(fù)數(shù)在復(fù)平面中對(duì)應(yīng)的點(diǎn)在第幾象限( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)集合A={x∈N|$\frac{1}{4}$≤2x≤16},B={x|y=ln(x2-3x)},則A∩B中元素的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知2sinα+cosα=0,求$\frac{sinα-3cosα}{2sinα+5cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.展開(2x+y)5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0)的最小正周期為π,f(0)=$\sqrt{2}$,則(  )
A.f(x)在$(-\frac{π}{4},\frac{π}{4})$單調(diào)遞增B.f(x)在$(-\frac{π}{4},\frac{π}{4})$單調(diào)遞減
C.f(x)在$(0,\frac{π}{2})$單調(diào)遞增D.f(x)在$(0,\frac{π}{2})$單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知sin(α+$\frac{π}{6}$)+cosα=$\frac{4}{5}$$\sqrt{3}$,則cos(2α+$\frac{2π}{3}$)的值為( 。
A.-$\frac{7}{25}$B.$\frac{7}{25}$C.$\frac{9}{25}$D.-$\frac{9}{25}$

查看答案和解析>>

同步練習(xí)冊(cè)答案