分析 (1)由題意可知實(shí)數(shù)λ,μ的值,
(2)求出極坐標(biāo)方程,根據(jù)三角函數(shù)的性質(zhì)即可求出最值.
解答 解:(1)由:φ:$\left\{\begin{array}{l}{x′=λx}\\{y′=μy}\end{array}\right.$(λ>0,μ>0)得到曲線C:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1,即為($\frac{x}{2}$)2+($\frac{y}{\sqrt{2}}$)2=1
∴$\left\{{\begin{array}{l}{λ=2}\\{μ=\sqrt{2}}\end{array}}\right.$,
(2)$ρ=\frac{2}{{\sqrt{{{cos}^2}θ+2{{sin}^2}θ}}}=\frac{2}{{\sqrt{1+{{sin}^2}θ}}}$,
故當(dāng)$θ=\frac{π}{2}$時,ρmin=$\sqrt{2}$.
點(diǎn)評 本題主要考查伸縮變換,考查參數(shù)方程的運(yùn)用,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{16}{27}$ | D. | $\frac{4}{27}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f:x→(2x-1)2 | B. | f:x→(2x-3) | C. | f:x→(2x-1) | D. | f:x→(2x-3)2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | 8π | C. | 12π | D. | 16π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+i | B. | 1-i | C. | -1+i | D. | -1-i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com