已知f(x)=x2-2ax+2,當(dāng)x∈[-1,+∞)時,f(x)≥a恒成立,則實數(shù)a的取值范圍是________.

[-3,1]
分析:f(x)=x2-2ax+2,當(dāng)x∈[-1,+∞)時,f(x)≥a恒成立,即x2-2ax+2-a≥0當(dāng)x∈[-1,+∞)時恒成立,由二次函數(shù)的性質(zhì)判斷出函數(shù)在[-1,+∞)上的最小值,令其非負(fù)求出實數(shù)a的取值范圍
解答:∵f(x)=x2-2ax+2,當(dāng)x∈[-1,+∞)時,f(x)≥a恒成立
∴x2-2ax+2-a≥0當(dāng)x∈[-1,+∞)時恒成立 ①
△=4a2-4(2-a)≤0時,①式成立,解得-2≤a≤1
△=4a2-4(2-a)≥0時,得a<-2或a>1
又f(x)=x2-2ax+2-a的對稱軸是x=a
當(dāng)a>1時,函數(shù)的最小值是a2-2a2+2-a≥0,解得-2≤a≤1,此種情況下無解,
當(dāng)a<-2時,函數(shù)的最小值是6+2a≥0,a≥-3,故有-3≤a<-2
綜上,實數(shù)a的取值范圍是[-3,1]
故答案為[-3,1]
點評:本題考查二次函數(shù)的性質(zhì),解題的關(guān)鍵是理解二次函數(shù)的性質(zhì),且能根據(jù)二次函數(shù)的性質(zhì)將題設(shè)中恒成立的條件轉(zhuǎn)化成關(guān)于所求參數(shù)的不等式,解出a的取值范圍,本題求解時要注意轉(zhuǎn)化等價,分類要統(tǒng)一標(biāo)準(zhǔn),分類清楚,莫因為分類不清,轉(zhuǎn)化不等價導(dǎo)致解題失。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+ax+b(a,b∈R的定義域為[-1,1].
(1)記|f(x)|的最大值為M,求證:M≥
1
2
.
(2)求出(1)中的M=
1
2
時,f(x)
的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+x+1,則f(
2
)
=
 
;f[f(
2
)
]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+2x,數(shù)列{an}滿足a1=3,an+1=f′(an)-n-1,數(shù)列{bn}滿足b1=2,bn+1=f(bn).
(1)求證:數(shù)列{an-n}為等比數(shù)列;
(2)令cn=
1
an-n-1
,求證:c2+c3+…+cn
2
3
;
(3)求證:
1
3
1
1+b1
+
1
1+b2
+…+
1
1+bn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2-x+k,若log2f(2)=2,
(1)確定k的值;
(2)求f(x)+
9f(x)
的最小值及對應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+(a+1)x+lg|a+2|(a≠-2,a∈R),
(Ⅰ)若f(x)能表示成一個奇函數(shù)g(x)和一個偶函數(shù)h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)若f(x)和g(x)在區(qū)間(-∞,(a+1)2]上都是減函數(shù),求a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,比較f(1)和
16
的大小.

查看答案和解析>>

同步練習(xí)冊答案