精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=2sinx•sin(
π
3
-x)+
3
sinx•cosx+cos2x

(1)求函數f(x)的最小正周期,最大值及取最大值時相應的x值;
(2)如果0≤x≤
π
2
,求f(x)的取值范圍.
(1)f(x)=2sinx(
3
2
cosx-
1
2
sinx)+
3
sinxcosx+cos2x
=2
3
sinxcosx+cos2x-sin2x
=
3
sin2x+cos2x
=2sin(2x+
π
6
)…(6分)
∴f(x)的最小正周期T=
2
=π.
當2x+
π
6
=2kπ+
π
2
,x=kπ+
π
6
(k∈z)時,f(x)取得最大值2.…(10分)
(2)由0≤x≤
π
2
,得
π
6
≤2x+
π
6
6
,
-
1
2
≤sin(2x+
π
6
)≤1,
∴f(x)的值域為[-1,2]…(14分)
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
2-xx+1

(1)求出函數f(x)的對稱中心;
(2)證明:函數f(x)在(-1,+∞)上為減函數;
(3)是否存在負數x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數f(x)的值域和最小正周期;
(2)當x∈[0,2π]時,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2-
ax+1
(a∈R)
的圖象過點(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個零點;
(3)若f(x)+mx>1對一切的正實數x均成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當x=
3
3
時,函數f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習冊答案