分析 (1)由$\left\{\begin{array}{l}x=3+4coxθ\\ y=4+4sinθ\end{array}\right.$消去θ,得C1的直角坐標(biāo)方程,再將x=ρcosφ,y=ρsinφ代入能求出C1的極坐標(biāo)方程.
(2)先求出C2的直角坐標(biāo)方程,和C1的直角坐標(biāo)方程聯(lián)立,求出C1、C2的交點(diǎn)所在直線方程,由此能求出其極坐標(biāo)方程.
解答 (1)解:∵曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=3+4coxθ\\ y=4+4sinθ\end{array}\right.$(θ為參數(shù)),
∴由$\left\{\begin{array}{l}x=3+4coxθ\\ y=4+4sinθ\end{array}\right.$消去θ,得C1的直角坐標(biāo)方程:(x-3)2+(y-4)2=16,(2分)
即x2+y2-6x-8y+9=0
將x=ρcosφ,y=ρsinφ代入得C1的極坐標(biāo)方程為ρ2-6ρcosφ-8ρsinφ+9=0.(4分)
(2)解:∵曲線C2的極坐標(biāo)方程為ρ=4sinθ,
由ρ=4sinθ,得C2的普通方程為:x2+y2-4y=0,(6分)
由$\left\{\begin{array}{l}{x^2}+{y^2}-6x-8y+9=0\\{x^2}+{y^2}-4y=0\end{array}\right.$,得:6x+4y-9=0,(8分)
∴C1、C2的交點(diǎn)所在直線方程為6x+4y-9=0
∴其極坐標(biāo)方程為:6ρcosθ+4ρsinθ-9=0.(10分)
點(diǎn)評 本題考查極坐標(biāo)方程的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意直角坐標(biāo)、極坐標(biāo)互化公式的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 三棱臺 | B. | 三棱柱 | C. | 四棱柱 | D. | 四棱錐 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{3}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{6}}{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{2\sqrt{5}}{3}$ | D. | $\frac{2\sqrt{6}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com