分析 用共面向量基本定理建立四個(gè)點(diǎn)之間向量的等式,利用向量的相等建立關(guān)于參數(shù)的方程求參數(shù).
解答 解:$\overrightarrow{PA}$=(0,-3,2),$\overrightarrow{PB}$=(7,-1,4).
根據(jù)共面向量定理,設(shè)$\overrightarrow{PC}$=x$\overrightarrow{PA}$+y$\overrightarrow{PB}$(x、y∈R),
則(4a,2a+1,2)=x(0,-3,2)+y(7,-1,4)=(7y,-3x-y,2x+4y),
∴$\left\{\begin{array}{l}{4a=7y}\\{2a+1=-3x-y}\\{2=2x+4y}\end{array}\right.$,
解得x=-$\frac{13}{3}$,y=$\frac{8}{3}$,a=$\frac{14}{3}$,
故答案為:$\frac{14}{3}$.
點(diǎn)評(píng) 考查空間向量共面定理及向量相等的充要條件,考查知識(shí)較基本.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $±\sqrt{2}$ | B. | $±\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10 | B. | $\sqrt{5}$ | C. | 5 | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com