已知過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線交拋物線于M、N兩點(diǎn),直線OM、ON(O為坐標(biāo)原點(diǎn))分別與準(zhǔn)線相交于P、Q兩點(diǎn),則∠PFQ=( )
A.
B.
C.
D.
【答案】分析:假設(shè)直線MN的方程與拋物線方程聯(lián)立,判斷MQ⊥PQ,NP⊥PQ,再利用拋物線的定義可得相等的角,進(jìn)而可求∠PFQ=90°
解答:解:由題意,設(shè)直線MN的方程為:
代入拋物線y2=2px(p>0),可得y2-2mpy-p2=0
設(shè)A(x1,y1),B(x2,y2),則
∵OM的方程為:,ON的方程為:,直線OM、ON(O為坐標(biāo)原點(diǎn))分別與準(zhǔn)線相交于P、Q兩點(diǎn)
,∴

,
∴MQ⊥PQ,NP⊥PQ,
∴∠MQF=∠QFO,∠NPF=∠PFO
∵過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線交拋物線于M、N兩點(diǎn)
∴MQ=MF,NP=NF
∴∠MQF=∠MFQ,∠NFP=∠NPF
∴∠PFQ=90°
故選D.
點(diǎn)評(píng):本題以拋物線為載體,考查拋物線的性質(zhì),考查拋物線的過(guò)焦點(diǎn)弦,計(jì)算要小心,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、已知過(guò)拋物線y2=4x的焦點(diǎn)F的直線交該拋物線于A、B兩點(diǎn),|AF|=2,則|BF|=
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知過(guò)拋物線y2=2px(p>0)的焦點(diǎn),斜率為2
2
的直線交拋物線于A(x1,y1)和B(x2,y2)(x1<x2)兩點(diǎn),且|AB|=9,
(1)求該拋物線的方程;
(2)O為坐標(biāo)原點(diǎn),C為拋物線上一點(diǎn),若
OC
=
OA
OB
,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知過(guò)拋物線y2=6x焦點(diǎn)的弦長(zhǎng)為12,則此弦所在直線的傾斜角是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•武漢模擬)已知過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線交拋物線于M、N兩點(diǎn),直線OM、ON(O為坐標(biāo)原點(diǎn))分別與準(zhǔn)線l:x=-
p
2
相交于P、Q兩點(diǎn),則∠PFQ=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練16練習(xí)卷(解析版) 題型:填空題

已知過(guò)拋物線y2=4x的焦點(diǎn)F的直線交該拋物線于A、B兩點(diǎn),|AF|=2,|BF|=    .

 

查看答案和解析>>

同步練習(xí)冊(cè)答案