分析 (1)原不等式可化為:|x-1|>1-x2,即x-1>1-x2或x-1<x2-1,即可求不等式f(x)+x2-1>0的解集;
(2)原不等式等價(jià)于|x-1|+|x+3|<m的解集非空,令h(x)=|x-1|+|x+3|,即h(x)min<m,即可求實(shí)數(shù)m的取值范圍.
解答 解:(1)原不等式可化為:|x-1|>1-x2,即x-1>1-x2或x-1<x2-1,
由x-1>1-x2,得x>1或x<-2;由x-1<x2-1,得x>1或x<0.
綜上,原不等式的解集為{x|x>1或x<0}.
(2)原不等式等價(jià)于|x-1|+|x+3|<m的解集非空,
令h(x)=|x-1|+|x+3|,即h(x)min<m,
由|x-1|+|x+3|≥|x-1-x-3|=4,所以h(x)min=4,所以m>4.
點(diǎn)評(píng) 本題考查不等式的解法,考查函數(shù)的最值,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若命題p:?x0∈R,x02-x0+1<0,則¬p:?x∉R,x2-x+1≥0 | |
B. | 已知相關(guān)變量(x,y)滿足回歸方程$\stackrel{∧}{y}$=2-4x,若變量x增加一個(gè)單位,則y平均增加4個(gè)單位 | |
C. | 命題“若圓C:(x-m+1)2+(y-m)2=1與兩坐標(biāo)軸都有公共點(diǎn),則實(shí)數(shù)m∈[0,1]為真命題 | |
D. | 已知隨機(jī)變量X~N(2,σ2),若P(X<a)=0.32,則P(X>4-a)=0.68 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(0,\;\frac{1}{3})$ | B. | $(\frac{1}{3},\;\frac{1}{2})$ | C. | $(\frac{1}{2},\;\frac{2}{3})$ | D. | $(\frac{2}{3},\;1)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-3,3] | B. | (-∞,-3]∪[3,+∞) | C. | (-∞,-1]∪[1,+∞) | D. | [-1,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com