【題目】已知函數(shù)

(1)當時,求的單調(diào)區(qū)間;

(2)若對任意,都有成立,求實數(shù)的取值范圍;

(3)若過點可作函數(shù)圖像的三條不同切線,求實數(shù)的取值范圍.

【答案】(1) 單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2);(3)

【解析】

試題解析:(1)當a=3時,,得

因為,

所以當1<x<2時,,函數(shù)單調(diào)遞增;

x<1x>2時,,函數(shù)單調(diào)遞減.

所以函數(shù)的單調(diào)遞增區(qū)間為(1,2),單調(diào)遞減區(qū)間為(-∞,1)和(2,+∞).

2)由,得,

因為對于任意都有成立,

即對于任意都有成立,

即對于任意都有成立,

,

要使對任意都有成立,

必須滿足△<0

所以實數(shù)的取值范圍為(-1,8

3)設點P是函數(shù)圖象上的切點

則過P的切線的斜率為,

切線方程為:

在切線上

若過點可作函數(shù)圖象的三條不同切線

有三個不等的實根,

,解得

實數(shù)的取值范圍

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,且下列三個關系:,中有且只有一個正確,則函數(shù)的值域是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為方便市民出行,倡導低碳出行.某市公交公司推出利用支付寶和微信掃碼支付乘車活動,活動設置了一段時間的推廣期,在推廣期內(nèi)采用隨機優(yōu)惠鼓勵市民掃碼支付乘車.該公司某線路公交車隊統(tǒng)計了活動推廣期第一周內(nèi)使用掃碼支付的情況,其中(單位:天)表示活動推出的天次,(單位:十人次)表示當天使用掃碼支付的人次,整理后得到如圖所示的統(tǒng)計表1和散點圖.

表1:

x

第1天

第2天

第3天

第4天

第5天

第6天

第7天

y

7

12

20

33

54

90

148

(1)由散點圖分析后,可用作為該線路公交車在活動推廣期使用掃碼支付的人次關于活動推出天次的回歸方程,根據(jù)表2的數(shù)據(jù),求此回歸方程,并預報第8天使用掃碼支付的人次(精確到整數(shù)).

表2:

img src="http://thumb.zyjl.cn/questionBank/Upload/2019/08/08/08/88254471/SYS201908080801220877999013_ST/SYS201908080801220877999013_ST.008.png" width="67" height="40" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />

4

52

3.5

140

2069

112

表中,.

(2)推廣期結束后,該車隊對此期間乘客的支付情況進行統(tǒng)計,結果如表3.

表3:

支付方式

現(xiàn)金

乘車卡

掃碼

頻率

10%

60%

30%

優(yōu)惠方式

無優(yōu)惠

按7折支付

隨機優(yōu)惠(見下面統(tǒng)計結果)

統(tǒng)計結果顯示,掃碼支付中享受5折支付的頻率為,享受7折支付的頻率為,享受9折支付的頻率為.已知該線路公交車票價為1元,將上述頻率作為相應事件發(fā)生的概率,記隨機變量為在活動期間該線路公交車搭載乘客一次的收入(單位:元),求的分布列和期望.

參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為參考數(shù)據(jù):,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】短道速滑隊組織6名隊員(包括賽前系列賽積分最靠前的甲乙丙三名隊員在內(nèi))參加冬奧會選拔賽,記甲得第一名乙得第二名,丙得第三名,若是真命題,是假命題,是真命題,則選拔賽的結果為(

A.甲得第一名、乙得第三名、丙得第二名

B.甲沒得第一名、乙沒得第二名、丙得第三名

C.甲得第一名、乙沒得第二名、丙得第三名

D.甲得第二名、乙得第一名、丙得第三名

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)若曲線在它們的交點處有相同的切線,求實數(shù)a,b的值;

(2)當時,若函數(shù)在區(qū)間內(nèi)恰有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列的前n項和為,數(shù)列滿足.

1)求數(shù)列的通項公式;

2)數(shù)列滿足,它的前n項和為,若存在正整數(shù)n,使不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過拋物線x22py(p>0)的焦點,斜率為的直線交拋物線于A(x1y1),B(x2y2)(x1<x2)兩點,且|AB|9.

(1)求該拋物線的方程;

(2)O為坐標原點,C為拋物線上一點,若,λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)討論函數(shù)的單調(diào)性;

(2)若不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系.已知曲線C的極坐標方程為ρ1-cos2θ=8cosθ,直線ρcosθ=1與曲線C相交于M,N兩點,直線l過定點P2,0)且傾斜角為α,l交曲線CAB兩點.

1)把曲線C化成直角坐標方程,并求|MN|的值;

2)若|PA|,|MN||PB|成等比數(shù)列,求直線l的傾斜角α

查看答案和解析>>

同步練習冊答案