5.已知P是△ABC內(nèi)一點,$\overrightarrow{PB}$+$\overrightarrow{PC}$+4$\overrightarrow{PA}$=$\overrightarrow{0}$,現(xiàn)將一粒黃豆撒在△ABC內(nèi),則黃豆落在△PBC內(nèi)的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{1}{2}$

分析 根據(jù)向量加法的平行四邊形法則,結(jié)合共線向量充要條件,得點P是△ABC邊BC上的中線AO的三等分點.再根據(jù)幾何概型公式,將△PBC的面積與△ABC的面積相除可得本題的答案.

解答 解:以PB、PC為鄰邊作平行四邊形PBDC,則$\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{PD}$,
∵$\overrightarrow{PB}$+$\overrightarrow{PC}$+4$\overrightarrow{PA}$=$\overrightarrow{0}$,
∴$\overrightarrow{PB}$+$\overrightarrow{PC}$=-4$\overrightarrow{PA}$,得$\overrightarrow{PD}$=-4$\overrightarrow{PA}$
∴$\overrightarrow{PD}$=2$\overrightarrow{PO}$=-4$\overrightarrow{PA}$,即$\overrightarrow{PO}$=-2$\overrightarrow{PA}$,
由此可得,P是△ABC邊BC上的中線AO的一個三等分點,
點P到BC的距離等于A到BC的距離的$\frac{2}{3}$.
∴S△PBC=$\frac{2}{3}$S△ABC
將一粒黃豆隨機撒在△ABC內(nèi),黃豆落在△PBC內(nèi)的概率為P=$\frac{{S}_{△PBC}}{{S}_{△ABC}}$=$\frac{2}{3}$,
故選:C.

點評 本題給出點P滿足的條件,求P點落在△PBC內(nèi)的概率,著重考查了平面向量加法法則、向量共線的充要條件和幾何概型等知識.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.設(1-2x)n=a0+a1x+a2x2+…+anxn(x∈N*),若a1+a2=30,則n=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.曲線y=cosx(-$\frac{π}{2}$≤x≤$\frac{π}{2}$)與x軸所圍成的封閉圖形的面積等于2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知首項為$\frac{3}{2}$的等比數(shù)列{an}不是遞減數(shù)列,其前n項和為Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=(-1)n+1•n(n∈N*),求數(shù)列{an•bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.“輾轉(zhuǎn)相除法”的算法思路如圖所示,記R(a\b)為a除以b所得的余數(shù)(a,b∈N*),執(zhí)行如圖的程序框圖,若輸入a,b分別為405,75,則輸出b的值為( 。
A.3B.5C.15D.25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知數(shù)列{an}的前n項和Sn滿足an+1=2Sn+a1,且a1,a2+2,a3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)證明$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$<$\frac{3}{2}$對任意正整n成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x-1(x≥0)}\\{\frac{1}{x}(x<0)}\end{array}\right.$,若f(f(a))=-$\frac{1}{2}$,則實數(shù)a=-$\frac{1}{2}$或4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知△ABC和△A1B1C1滿足sinA=cosA1,sinB=cosB1,sinC=cosC1
(1)求證:△ABC是鈍角三角形,并求最大角的度數(shù);
(2)求sin2A+sin2B+sin2C的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.若x,y滿足約束條件$\left\{{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}}\right.$則$\frac{x+2y}{2x+y}$的取值范圍為[1,$\frac{7}{5}$].

查看答案和解析>>

同步練習冊答案