3.已知函數(shù)$f(α)=2sin(α-\frac{π}{6})$.
(1)當$f(α)=1,(0<α<\frac{π}{2})$時,求α的值;
(2)當$f(α)=\frac{6}{5},(0<α<\frac{π}{2})$時,求$f(2α+\frac{π}{12})$的值.

分析 (1)由f(α)=1得sin($α-\frac{π}{6}$)=$\frac{1}{2}$,根據(jù)α的范圍判斷α-$\frac{π}{6}$的范圍,得出α-$\frac{π}{6}$的值;
(2)由f(α)的值得出sin(α-$\frac{π}{6}$)的值,根據(jù)α-$\frac{π}{6}$的范圍求出cos(α-$\frac{π}{6}$),使用二倍角公式求出sin(2$α-\frac{π}{3}$)的值,在利用和角公式的正弦三角公式得出f(2$α+\frac{π}{12}$).

解答 解:(1)∵f(α)=2sin($α-\frac{π}{6}$)=1,∴sin($α-\frac{π}{6}$)=$\frac{1}{2}$,∵0$<α<\frac{π}{2}$,∴-$\frac{π}{6}$<α-$\frac{π}{6}$<$\frac{π}{3}$,∴$α-\frac{π}{6}$=$\frac{π}{6}$,∴α=$\frac{π}{3}$.
(2)由$f(α)=\frac{6}{5}$,得$sin(α-\frac{π}{6})=\frac{3}{5}$.∵$0<α<\frac{π}{2}$,∴$cos(α-\frac{π}{6})=\frac{4}{5}$.
∴$sin(2α-\frac{π}{3})=2sin(α-\frac{π}{6})cos(α-\frac{π}{6})=\frac{24}{25}$.$cos(2α-\frac{π}{3})={cos^2}(α-\frac{π}{6})-{sin^2}(α-\frac{π}{6})=\frac{7}{25}$.
∴$f(2α+\frac{π}{12})=2sin(2α-\frac{π}{12})=2sin(2α-\frac{π}{3}+\frac{π}{4})$=$2sin(2α-\frac{π}{3})cos\frac{π}{4}+2cos(2α-\frac{π}{3})sin\frac{π}{4}=\frac{{31\sqrt{2}}}{25}$.

點評 本題考查了三角函數(shù)的恒等變換和求值,熟練掌握三角公式,發(fā)現(xiàn)角的關系是解題關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知數(shù)列{an}的前n項和為Sn,且a1=3,Sn+1-2Sn=1-n,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)證明:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$<$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)在(0,$\frac{π}{2}$)上處處可導,若[f(x)-f′(x)]tanx-f(x)<0,則( 。
A.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$一定小于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$
B.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$一定大于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$
C.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$可能大于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$
D.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$可能等于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=Asin(3x+φ)(A>0.x∈(-∞,+∞),0<φ<π)在x=$\frac{π}{12}$時取得最大值4..
(1)求f(x)的最小正周期;
(2)求f(x)的解析式;
(3)若f($\frac{2}{3}$α+$\frac{π}{12}$)=$\frac{12}{5}$.求tan2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在邊長為3的正方形ABCD內(nèi)隨機取點P,則點P到正方形各頂點的距離都大于1的概率為1-$\frac{π}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在正項等比數(shù)列{an}中,前n項和為Sn,a5=1,a6+a7=6,則S5=$\frac{31}{16}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知函數(shù)y=3cos(2x+φ)的圖象關于點$({\frac{2π}{3},0})$中心對稱,則|φ|的最小值為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.等差數(shù)列{an}中,a2=4,a4+a7=15.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=2${\;}^{{a}_{n}-2}$+n,求b1+b2+b3+…+b8的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)$f(x)=Asin(ωx+ϕ)(A>0,ω>0,0<ϕ<\frac{π}{2})$的圖象經(jīng)過三點$({0,\frac{1}{8}}),({\frac{5}{12},0}),({\frac{11}{12},0})$,在區(qū)間$({\frac{5}{12},\frac{11}{12}})$內(nèi)有唯一的最小值.
(Ⅰ)求出函數(shù)f(x)=Asin(ωx+ϕ)的解析式;
(Ⅱ)求函數(shù)f(x)在R上的單調(diào)遞增區(qū)間和對稱中心坐標.

查看答案和解析>>

同步練習冊答案