12.等差數(shù)列{an}中,a2=4,a4+a7=15.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=2${\;}^{{a}_{n}-2}$+n,求b1+b2+b3+…+b8的值.

分析 (Ⅰ)設(shè)等差數(shù)列{an}的公差為d,運用等差數(shù)列的通項公式,列方程,解方程可得首項和公差,即可得到所求通項公式;
(Ⅱ)求得bn=2${\;}^{{a}_{n}-2}$+n=2n+n,由數(shù)列的求和方法:分組求和,結(jié)合等比數(shù)列和等差數(shù)列的求和公式,計算即可得到所求值.

解答 解:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,
由a2=4,a4+a7=15,可得
a1+d=4,2a1+9d=15,
解得a1=3,d=1,
則an=a1+(n-1)d=n+2;
(Ⅱ)bn=2${\;}^{{a}_{n}-2}$+n=2n+n,
則b1+b2+b3+…+b8=(2+1)+(22+2)+…+(28+8)
=(2+22+…+28)+(1+2+…+8)
=$\frac{2(1-{2}^{8})}{1-2}$+$\frac{1}{2}$×(1+8)×8=546.

點評 本題考查等差數(shù)列的通項公式的運用,考查數(shù)列的求和方法:分組求和,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=x3+ax2+bx+c,且0<f(1)=f(2)=f(3)≤3,則c的取值范圍是( 。
A.c≤3B.3<c≤6C.-6<c≤-3D.c≥9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)$f(α)=2sin(α-\frac{π}{6})$.
(1)當(dāng)$f(α)=1,(0<α<\frac{π}{2})$時,求α的值;
(2)當(dāng)$f(α)=\frac{6}{5},(0<α<\frac{π}{2})$時,求$f(2α+\frac{π}{12})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.甲、乙兩名運動員進(jìn)行射擊訓(xùn)練,已知他們擊中目標(biāo)的環(huán)數(shù)均穩(wěn)定在7,8,9,10環(huán),且每次射擊成績互不影響,射擊環(huán)數(shù)的頻率分布表如表:
甲運動員
射擊環(huán)數(shù)頻數(shù)頻率
710
810
9x
1030y
合計1001
乙運動員
射擊環(huán)數(shù)頻數(shù)頻率
76
810
9z0.4
10
合計80
如果將頻率視為概率,回答下面的問題:
(Ⅰ)寫出x,y,z的值;
(Ⅱ)求甲運動員在三次射擊中,至少有一次命中9環(huán)(含9環(huán))以上的概率;
(Ⅲ)若甲運動員射擊2次,乙運動員射擊1次,用ξ表示這三次中射擊擊中9環(huán)的次數(shù),求ξ的概率分布列及Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,c(cosA+cosB)=a+b,試判斷三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,已知c2=(a-b)2+6,C=$\frac{π}{3}$,則△ABC的面積是$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.(x2+3y-y27展開式中,x12y2項系數(shù)為(  )
A.7B.-7C.42D.-42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.將函數(shù)y=sinx的圖象上所有點的橫坐標(biāo)縮小到原來的$\frac{1}{2}$(縱坐標(biāo)不變),再將所得到的圖象上所有點向左平移$\frac{π}{6}$個單位,所得函數(shù)圖象的解析式為( 。
A.y=sin(2x-$\frac{π}{3}$)B.y=sin(2x+$\frac{π}{3}$)C.y=sin($\frac{1}{2}$x+$\frac{π}{3}$)D.y=sin($\frac{1}{2}$x+$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若△ABC的兩邊分別是方程x2-2$\sqrt{3}$x+2=0的兩根,且S△ABC=$\frac{\sqrt{3}}{2}$,則△ABC第三邊長為$\sqrt{10}$或$\sqrt{6}$.

查看答案和解析>>

同步練習(xí)冊答案