(本小題滿分14分)已知函數(shù)。
(Ⅰ)若函數(shù)在定義域內(nèi)為增函數(shù),求實數(shù)的取值范圍;
(Ⅱ)設(shè),若函數(shù)存在兩個零點,且滿足,問:函數(shù)在處的切線能否平行于軸?若能,求出該切線方程;若不能,請說明理由。
(Ⅰ).(Ⅱ)答:函數(shù)在處的切線不能平行于軸.
解析試題分析:(Ⅰ)因為,
,因為函數(shù)在定義域內(nèi)為增函數(shù),所以在恒成立且不恒為0,即在恒成立且不恒為0,所以在恒成立且不恒為0,所以。
(Ⅱ)
.
(Ⅱ)假設(shè)F(x)在的切線平行于x軸,其中
,綜合題意有:
,
由①②得,由④得
,,所以函數(shù),
此式與⑤矛盾,所以函數(shù)在處的切線不能平行于軸.
考點:導(dǎo)數(shù)的幾何意義;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;利用導(dǎo)數(shù)研究函數(shù)的最值。
點評:利用導(dǎo)數(shù)工具討論函數(shù)的單調(diào)性,是求函數(shù)的值域和最值的常用方法,本題還考查了分類討論思想在函數(shù)題中的應(yīng)用,同學(xué)們在做題的同時,可以根據(jù)單調(diào)性,結(jié)合函數(shù)的草圖來加深對題意的理解.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) ,且能表示成一個奇函數(shù)和一個偶函數(shù)的和.
(1)求和的解析式.
(2)命題:函數(shù)在區(qū)間上是增函數(shù);命題:函數(shù)是減函數(shù),如果命題、有且僅有一個是真命題,求實數(shù)的取值范圍.
(3)在(2)的條件下,比較和的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)。
(I)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若恒成立,試確定實數(shù)k的取值范圍;
(Ⅲ)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)f(x)=(x2+ax-2a-3)·e3-x (a∈R)
(1)討論f(x)的單調(diào)性;
(2)設(shè)g(x)=(a2+)ex(a>0),若存在x1,x2∈[0,4]使得|f(x1)-g(x2)|<1成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)已知函數(shù)
(1) 當a= -1時,求函數(shù)的最大值和最小值;
(2) 求實數(shù)a的取值范圍,使y=f(x)在區(qū)間上是單調(diào)函數(shù)
(3) 求函數(shù)f(x)的最小值g(a),并求g(a)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
不等式選講已知函數(shù)。
⑴當時,求函數(shù)的最小值;
⑵當函數(shù)的定義域為時,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
設(shè)函數(shù)的導(dǎo)函數(shù)為,且。
(Ⅰ)求函數(shù)的圖象在x=0處的切線方程;
(Ⅱ)求函數(shù)的極值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)().
(1)若的定義域和值域均是,求實數(shù)的值;
(2)若對任意的,,總有,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com