【題目】某藥業(yè)公司統(tǒng)計(jì)了2010-2019年這10年某種疾病的患者人數(shù),結(jié)論如下:該疾病全國(guó)每年的患者人數(shù)都不低于100萬,其中有3年的患者人數(shù)低于200萬,有6年的患者人數(shù)不低于200萬且低于300萬,有1年的患者人數(shù)不低于300.

1)藥業(yè)公司為了解一新藥品對(duì)該疾病的療效,選擇了200名患者,隨機(jī)平均分為兩組作為實(shí)驗(yàn)組和對(duì)照組,實(shí)驗(yàn)結(jié)束時(shí),有顯著療效的共110人,實(shí)驗(yàn)組中有顯著療效的比率為70.請(qǐng)完成如下的2×2列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99.9%把握認(rèn)為該藥品對(duì)該疾病有顯著療效;

實(shí)驗(yàn)組

對(duì)照組

合計(jì)

有顯著療效

無顯著療效

合計(jì)

200

2)藥業(yè)公司最多能引進(jìn)3條新藥品的生產(chǎn)線,據(jù)測(cè)算,公司按如下條件運(yùn)行生產(chǎn)線:

該疾病患者人數(shù)(單位:萬)

最多可運(yùn)行生產(chǎn)線數(shù)

1

2

3

每運(yùn)行一條生產(chǎn)線,可產(chǎn)生年利潤(rùn)6000萬元,沒運(yùn)行的生產(chǎn)線毎條每年要虧損1000萬元.根據(jù)該藥業(yè)公司這10年的統(tǒng)計(jì)數(shù)據(jù),將患者人數(shù)在以上三段的頻率視為相應(yīng)段的概率、假設(shè)各年的患者人數(shù)相互獨(dú)立.欲使該藥業(yè)公司年總利潤(rùn)的期望值達(dá)到最大,應(yīng)引進(jìn)多少條生產(chǎn)線?

附:參考公式:,其中.

0.05

0.025

0.010

0.001

3.841

5.024

6.635

10.828

【答案】1)填表見解析;有99.9%的把握認(rèn)為該藥品對(duì)該疾病有顯著療效;(2)應(yīng)引進(jìn)2條生產(chǎn)線.

【解析】

1)通過計(jì)算,直接列出2×2列聯(lián)表,根據(jù)公式計(jì)算,即可判斷出結(jié)果;

(2)分引進(jìn)1條,2條,3條生產(chǎn)線三種情況,分別求解總利潤(rùn)的期望值,即可得出結(jié)論.

1)列聯(lián)表如下:

實(shí)驗(yàn)組

對(duì)照組

合計(jì)

有顯著療效

70

40

110

無顯著療效

30

60

90

合計(jì)

100

100

200

由于

所以有99.9%的把握認(rèn)為該藥品對(duì)該疾病有顯著療效;

2)根據(jù)提議:,

記藥業(yè)公司年總利潤(rùn)為(單位:萬元),

①引進(jìn)1條生產(chǎn)線的情形:

由于每年的患者人數(shù)都在100萬以上,因此運(yùn)行1條生產(chǎn)線的概率為1,對(duì)應(yīng)的年利潤(rùn),

②引進(jìn)2條生產(chǎn)線的情形:

當(dāng)時(shí),運(yùn)行1條生產(chǎn)線,此時(shí),

因此

當(dāng)時(shí),運(yùn)行2條生產(chǎn)線,此時(shí)

因此,

由此得與的分布列如下:

5000

12000

P

0.3

0.7

所以;

③引進(jìn)3條生產(chǎn)線的情形:

當(dāng)時(shí),運(yùn)行1條生產(chǎn),此時(shí),

因此

當(dāng)時(shí),運(yùn)行2條生產(chǎn)線,此時(shí),

因此

當(dāng)時(shí),運(yùn)行3條生產(chǎn)線,此時(shí),

因此,

由此得與的分布列如下:

4000

11000

18000

P

0.3

0.6

0.1

所以,

因?yàn)?/span>990096006000

所以欲使該藥業(yè)公司年總利潤(rùn)的期望值達(dá)到最大,應(yīng)引進(jìn)2條生產(chǎn)線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若處的切線方程為,求實(shí)數(shù),的值:

2)求證:當(dāng)時(shí),上有兩個(gè)極值點(diǎn):

3)設(shè),若單調(diào)遞減,求實(shí)數(shù)的取值范圍.(其中為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1,F2是橢圓Cab0)的左、右焦點(diǎn),過橢圓的上頂點(diǎn)的直線x+y=1被橢圓截得的弦的中點(diǎn)坐標(biāo)為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過F1的直線l交橢圓于A,B兩點(diǎn),當(dāng)△ABF2面積最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】千百年來,人們一直在通過不同的方式傳遞信息.在古代,烽火狼煙、飛鴿傳書、快馬驛站等通信方式被人們廣泛傳知;第二次工業(yè)革命后,科技的進(jìn)步帶動(dòng)了電訊事業(yè)的發(fā)展,電報(bào)電話的發(fā)明讓通信領(lǐng)域發(fā)生了翻天覆地的變化;之后,計(jì)算機(jī)和互聯(lián)網(wǎng)的出現(xiàn)則.使得千里眼”“順風(fēng)耳變?yōu)楝F(xiàn)實(shí)……此時(shí)此刻,5G的到來即將給人們的生活帶來顛覆性的變革,“5G領(lǐng)先一方面是源于我國(guó)項(xiàng)層設(shè)計(jì)的宏觀布局,另一方面則來自于政府高度重視、企業(yè)積極搶灘、企業(yè)層面的科技創(chuàng)新能力和先發(fā)優(yōu)勢(shì).某科技創(chuàng)新公司基于領(lǐng)先技術(shù)的支持,豐富的移動(dòng)互聯(lián)網(wǎng)應(yīng)用等明顯優(yōu)勢(shì),隨著技術(shù)的不斷完善,該公司的5G經(jīng)濟(jì)收入在短期內(nèi)逐月攀升,業(yè)內(nèi)預(yù)測(cè),該創(chuàng)新公司在第1個(gè)月至第7個(gè)月的5G經(jīng)濟(jì)收入y(單位:百萬元)關(guān)于月份x的數(shù)據(jù)如下表:

時(shí)間(月份)

1

2

3

4

5

6

7

收入(百萬元)

6

11

21

34

66

101

196

根據(jù)以上數(shù)據(jù)繪制散點(diǎn)圖:

1)為了更充分運(yùn)用大數(shù)據(jù)、人工智能、5G等技術(shù),公司需要派出員工實(shí)地考察檢測(cè)產(chǎn)品性能和使用狀況,公司領(lǐng)導(dǎo)要從報(bào)名的五名科技人員A、B、C、DE中隨機(jī)抽取3個(gè)人前往,則AB同時(shí)被抽到的概率為多少?

2)根據(jù)散點(diǎn)圖判斷,a,bc,d均為大于零的常數(shù))哪一個(gè)適宜作為5G經(jīng)濟(jì)收入y關(guān)于月份x的回歸方程類型?(給出判斷即可,不必說明理由)并根據(jù)你判斷結(jié)果及表中的數(shù)據(jù),求出y關(guān)于x的回歸方程;

3)請(qǐng)你預(yù)測(cè)該公司8月份的5G經(jīng)濟(jì)收入.

參考數(shù)據(jù):

462

10.78

2711

50.12

2.82

3.47

其中設(shè),

參考公式:

對(duì)于一組具有線性相關(guān)系的數(shù)據(jù)2,3,n),其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,,,,

(1)求證:平面平面;

(2)在線段上是否存在點(diǎn),使得平面與平面所成銳二面角為?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】音樂是用聲音來表達(dá)人的思想感情的一種藝術(shù),明代的律學(xué)家朱載堉創(chuàng)建了十二平均律,并把十二平均律計(jì)算得十分精確,與當(dāng)今的十二平均律完全相同,其方法是將一個(gè)八度音程(即相鄰的兩個(gè)具有相同名稱的音之間,如圖中88鍵標(biāo)準(zhǔn)鋼琴鍵盤的一部分中,cc1便是一個(gè)八度音程)均分為十二等分的音律,如果用正式的音樂術(shù)語稱呼原來的7個(gè)音符,分別是cd,ef,ga,b,則多出來的5個(gè)音符為c#(讀做“升c”),d#f#,g#a#;12音階為:cc#,dd#,ef,f#,g,g#a,a#b,相鄰音階的頻率之比為1.如圖,則鍵盤cd的頻率之比為1,鍵盤ef的頻率之比為1,鍵盤cc1的頻率之比為12,由此可知,圖中的鍵盤b1f2的頻率之比為(

A.B.1C.1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線經(jīng)過點(diǎn)且傾斜角為,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程;

2)過原點(diǎn)作直線的垂線,垂足為,交曲線于另一點(diǎn),當(dāng)變化時(shí),求的面積的最大值及相應(yīng)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,D的中點(diǎn).

1)證明:平面;

2)若是邊長(zhǎng)為2的正三角形,且,平面平面.求平面與側(cè)面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,e為自然對(duì)數(shù)的底數(shù).

(1)若,且當(dāng)時(shí),總成立,求實(shí)數(shù)a的取值范圍;

(2)若,且存在兩個(gè)極值點(diǎn),,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案