分析 (1)根據(jù)導(dǎo)數(shù)的運算法則計算即可;(2)求出f′(x),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可.
解答 解:(1)y′=(2x2-3)′$\sqrt{1{+x}^{2}}$+(2x2-3)${(\sqrt{1{+x}^{2}})}^{′}$=4x$\sqrt{1{+x}^{2}}$+$\frac{{2x}^{3}-3x}{\sqrt{1{+x}^{2}}}$;
(2)∵f′(x)=-$\frac{lnx+1}{{{x}^{2}ln}^{2}x}$,
∴由f′(x)=-$\frac{lnx+1}{{{x}^{2}ln}^{2}x}$>0得:lnx+1<0,
∴x<$\frac{1}{e}$,又x>0,
∴0<x<$\frac{1}{e}$,
由f′(x)<0,解得:x>$\frac{1}{e}$,
故f(x)在(0,$\frac{1}{e}$)遞增,在($\frac{1}{e}$,+∞)遞減.
點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,熟練掌握求導(dǎo)公式是解題關(guān)鍵,本題是一道基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題:“若y=f(x)是冪函數(shù),則y=f(x)的圖象不經(jīng)過第四象限”的否命題是假命題 | |
B. | 設(shè)a,b∈R,則“a>b”是“a|a|>b|b|”的充要條件 | |
C. | 命題“?n∈N*,f(n)∈N*且f(n)≤n”的否定形式是“?n0∈N*,f(n0)∉N*且f(n0)≥n0” | |
D. | 若p∨q為假命題,則p,q均為假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com