8.下列命題中正確的有(  )
①設(shè)有一個(gè)回歸方程$\widehaty$=2-3x,變量x增加一個(gè)單位時(shí),y平均增加3個(gè)單位;
②命題P:“?x0∈R,x02-x0-1>0”的否定?P:“?x∈R,x2-x-1≤0”;
③“命題p或q為真”是“命題p且q為真”必要不充分條件;
④在一個(gè)2×2列聯(lián)表中,由計(jì)算得k2=6.679,則有99.9%的把握確認(rèn)這兩個(gè)變量間有關(guān)系.
本題可以參考獨(dú)立性檢驗(yàn)臨界值表
P(K2≥k)0.50.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.5357.87910.828
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

分析 根據(jù)回歸系數(shù)的幾何性質(zhì),可判斷①;根據(jù)特稱(chēng)命題的否定方法,可判斷②;根據(jù)充要條件的定義,可判斷③;根據(jù)獨(dú)立性檢驗(yàn),可判斷④.

解答 解:①設(shè)有一個(gè)回歸方程$\widehaty$=2-3x,變量x增加一個(gè)單位時(shí),y平均減少3個(gè)單位,故錯(cuò)誤;
②命題P:“?x0∈R,x02-x0-1>0”的否定?P:“?x∈R,x2-x-1≤0”,故正確;
③“命題p且q為真”⇒“命題p或q為真”成立,“命題p或q為真”⇒“命題p且q為真”不成立,
故“命題p或q為真”是“命題p且q為真”必要不充分條件,故正確;
④在一個(gè)2×2列聯(lián)表中,由計(jì)算得k2=6.679>6.535,則有99%的把握確認(rèn)這兩個(gè)變量間有關(guān)系,故錯(cuò)誤.
故選:B.

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了回歸分析,充要條件,特稱(chēng)命題,獨(dú)立性檢驗(yàn)等知識(shí)點(diǎn),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知命題p:曲線(xiàn)y=x2+(2m-3)x+1與x軸相交于不同的兩點(diǎn);命題q:$\frac{x^2}{m}+\frac{y^2}{2}$=1表示焦點(diǎn)在x軸上的橢圓.若“p且q”是假命題,“p或q”是真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在空間四邊形ABCD中,E,F(xiàn),G,H分別是AC,BC,BD,DA的中點(diǎn),若$AB=12\sqrt{2}$,$CD=4\sqrt{2}$,且四邊形EFGH的面積為$12\sqrt{3}$,則AB和CD所成的角為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在三角形ABC中,已知$sinB=\frac{3}{5}$,$cosA=\frac{5}{13}$,則cosC=$\frac{16}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知全集U=R,集合A={x|0≤x≤3},B={x|a<x≤a+1}
(1)當(dāng)a=1,求∁U(A∩B)
(2)當(dāng)集合A,B滿(mǎn)足A∪B=A時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知數(shù)列的前4項(xiàng)為4,-3,2,-1,…那么5是這個(gè)數(shù)列的( 。
A.第5項(xiàng)B.第6項(xiàng)C.第9項(xiàng)D.第10項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=ax2-|x|+2a-1(a為實(shí)常數(shù)).
( I)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間;
( II)設(shè)f(x)在區(qū)間[1,2]上的最小值為g(a),求g(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)函數(shù)f(x)=ex-ax+a(a∈R),設(shè)函數(shù)零點(diǎn)分別為x1,x2,且x1<x2,設(shè)f′(x)是f(x)的導(dǎo)函數(shù).
(Ⅰ)求實(shí)數(shù)a的取值范圍;
(Ⅱ)求證:f′($\sqrt{{x}_{1}{x}_{2}}$)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)對(duì)一切實(shí)數(shù)x,y都滿(mǎn)足f(x+y)=f(y)+(x+2y+1)x,且f(1)=0.
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)當(dāng)x∈[0,$\frac{1}{2}$]時(shí),f(x)+3<2x+a恒成立,求a的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案