13.已知集合A={0,a,a2},且1∈A,則a=( 。
A.1B.-1C.±1D.0

分析 集合A={0,a,a2},必有a≠a2,再利用1∈A,即可得出.

解答 解:集合A={0,a,a2},∴a≠a2,解得a≠0,1.
∵1∈A,
∴a2=1,a≠1,
則a=-1.
故選:B.

點評 本題考查了集合的運算性質、不等式的解法,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.用四種不同的顏色涂在如圖所示的6個區(qū)域,且相鄰兩個區(qū)域不能同色,則涂色方法總數(shù)是120.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知tan(π-α)=3,求:
(1)sinαcosα的值;
(2)$\frac{sin(π-α)+2cos(π+α)}{sin(\frac{π}{2}+α)-cos(\frac{π}{2}-α)}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)$f(x)=\frac{{1+a{x^2}}}{x+b}$的圖象經過點(1,3),并且g(x)=xf(x)是偶函數(shù).
(1)求實數(shù)a、b的值;
(2)用定義證明:函數(shù)g(x)在區(qū)間(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.關于x的不等式|$|\begin{array}{l}{x+a}&{2}\\{1}&{x}\end{array}|$<0的解集為(-1,b).
(1)求實數(shù)a,b的值;
(2)若z1=a+bi,z2=cosα+isinα,且z1z2為純虛數(shù),求tanα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.與雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1有共同漸近線且焦距為12的雙曲線的標準方程為$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{16}$=1,或$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{20}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若“x2-3x+2=0,則x=2”為原命題,則它的逆命題、否命題與逆否命題中,真命題的個數(shù)是( 。
A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.集合U={x∈Z|x(x-7)<0},A={1,4,5},B={2,3,5},則A∩(∁UB}=( 。
A.{1,5}B.{1,4,6}C.{1,4}D.{1,4,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設命題p:?x>0,sinx>2x-1,則¬p為( 。
A.?x>0,sinx≤2x-1B.?x>0,sinx<2x-1C.?x>0,sinx<2x-1D.?x>0,sinx≤2x-1

查看答案和解析>>

同步練習冊答案