如圖,以長方體ABCD—A1B1C1D1的頂點A、C及另兩個頂點為頂點構(gòu)造四面體.

(1)若該四面體的四個面都是直角三角形,試寫出一個這樣的四面體(不要求證明);

(2)我們將四面體中兩條無公共端點的棱叫做對棱,若該四面體的任一對對棱垂直,試寫出一個這樣的四面體(不要求證明);

(3)若該四面體的任一對對棱相等,試寫出一個這樣的四面體(不要求證明),并計算它的體積與長方體的體積的比.

解:(1)如四面體A1—ABC或四面體C1—ABC或四面體A1—ACD或四面體C1—ACD.4分

(2)如四面體B1—ABC或四面體D1—ACD.

(3)如四面體A—B1CD1.

設(shè)長方體的長、寬、高分別為a、b、c,則=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,以長方體ABCD-A1B1C1D1的一個頂點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立空間直角坐標系.已知點B1的坐標是(2,1,1).
(1)證明向量
AD1
,
A1C1
,
BA1
是共面向量;
(2)求異面直線AC1與A1D所成角的余弦值;
(3)求二面角C-AC1-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,以長方體ABCD-A1B1C1D1的頂點A、C及另兩個頂點為頂點構(gòu)造四面體.
(1)若該四面體的四個面都是直角三角形,試寫出一個這樣的四面體(不要求證明);
(2)我們將四面體中兩條無公共端點的棱叫做對棱,若該四面體的任一對對棱垂直,試寫出一個這樣的四面體(不要求證明);
(3)若該四面體的任一對對棱相等,試寫出一個這樣的四面體(不要求證明),并計算它的體積與長方體的體積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,以長方體ABCD—A1B1C1D1的頂點A、C及另兩個頂點為頂點構(gòu)造四面體.

(1)若該四面體的四個面都是直角三角形,試寫出一個這樣的四面體(不要求證明);

(2)我們將四面體中兩條無公共端點的棱叫做對棱,若該四面體的任一對對棱垂直,試寫出一個這樣的四面體(不要求證明);

(3)若該四面體的任一對對棱相等,試寫出一個這樣的四面體(不要求證明),并計算它的體積與長方體的體積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年江蘇省南京市金陵中學(xué)高考數(shù)學(xué)三模試卷(解析版) 題型:解答題

如圖,以長方體ABCD-A1B1C1D1的頂點A、C及另兩個頂點為頂點構(gòu)造四面體.
(1)若該四面體的四個面都是直角三角形,試寫出一個這樣的四面體(不要求證明);
(2)我們將四面體中兩條無公共端點的棱叫做對棱,若該四面體的任一對對棱垂直,試寫出一個這樣的四面體(不要求證明);
(3)若該四面體的任一對對棱相等,試寫出一個這樣的四面體(不要求證明),并計算它的體積與長方體的體積的比.

查看答案和解析>>

同步練習(xí)冊答案