分析 先求得直線l的普通方程,把曲線C:ρ=acosθ(a>0)的極坐標(biāo)方程化為直角坐標(biāo)方程.因?yàn)橹本l與曲線C有且只有一個(gè)公共點(diǎn),可得圓心到直線的距離等于圓半徑,由此解得a的值
解答 解:依題意,A($\sqrt{3}$,$\frac{π}{6}$),B(a,0)的直角坐標(biāo)為A($\frac{3}{2}$,$\frac{\sqrt{3}}{2}$),B(a,0),
從而直線l的普通方程為$\frac{y}{x-a}=\frac{\frac{\sqrt{3}}{2}}{\frac{3}{2}-a}$,即$\sqrt{3}x+(2a-3)y-\sqrt{3}a$=0.
曲線C:ρ=cosθ的直角坐標(biāo)方程為 (x-$\frac{1}{2}$)2+y2=$\frac{1}{4}$.
∵直線l與曲線C有且只有一個(gè)公共點(diǎn),
∴$\frac{|\frac{\sqrt{3}}{2}-\sqrt{3}a|}{\sqrt{3+(2a-3)^{2}}}$=$\frac{1}{2}$,解得a=$\frac{3\sqrt{2}}{4}$或a=-$\frac{3\sqrt{2}}{4}$(舍).
∴正數(shù)a的值為$\frac{3\sqrt{2}}{4}$.
點(diǎn)評 本題考查實(shí)數(shù)值的求法,考查極坐標(biāo)方程、直角坐標(biāo)方程、參數(shù)方程的互化、點(diǎn)到直線的距離公式等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 3 | 4 | 5 | 6 | 7 |
y | 4.0 | 2.5 | -0.5 | 0.5 | -2.0 |
A. | 1.4 | B. | -1.4 | C. | 1.2 | D. | -1.2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (1,0) | C. | (1,-1) | D. | (1,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | $\frac{4}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
參會人數(shù)x(萬人) | 11 | 9 | 8 | 10 | 12 |
原材料t(袋) | 28 | 23 | 20 | 25 | 29 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com