【題目】英語(yǔ)老師要求學(xué)生從星期一到星期四每天學(xué)習(xí)3個(gè)英語(yǔ)單詞:每周五對(duì)一周內(nèi)所學(xué)單詞隨機(jī)抽取若干個(gè)進(jìn)行檢測(cè)(一周所學(xué)的單詞每個(gè)被抽到的可能性相同)

(I)英語(yǔ)老師隨機(jī)抽了個(gè)單詞進(jìn)行檢測(cè),求至少有個(gè)是后兩天學(xué)習(xí)過(guò)的單詞的概率;

(Ⅱ)某學(xué)生對(duì)后兩天所學(xué)過(guò)的單詞每個(gè)能默寫(xiě)對(duì)的概率為,對(duì)前兩天所學(xué)過(guò)的單詞每個(gè)能默寫(xiě)對(duì)的概率為,若老師從后三天所學(xué)單詞中各抽取一個(gè)進(jìn)行檢測(cè),求該學(xué)生能默寫(xiě)對(duì)的單詞的個(gè)數(shù)的分布列和期望。

【答案】I,(Ⅱ)分布列見(jiàn)解析,期望為

【解析】

I)根據(jù)古典概型概率公式求解,(Ⅱ)先確定隨機(jī)變量,再分別求對(duì)應(yīng)概率,列表得分布列,最后根據(jù)數(shù)學(xué)期望公式得結(jié)果.

(Ⅰ)設(shè)英語(yǔ)老師抽到的4個(gè)單詞中,至少含有個(gè)后兩天學(xué)過(guò)的事件為,則由題意可得

(Ⅱ)由題意可得ξ可取0,1,2,3,

則有

,

所以的分布列為:

0

1

2

3

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線CO為坐標(biāo)原點(diǎn),FC的右焦點(diǎn),過(guò)F的直線與C的兩條漸近線的交點(diǎn)分別為M、N.OMN為直角三角形,則|MN|=

A. B. 3 C. D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若不等式上恒成立,則實(shí)數(shù)的取值范圍是( ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】祖暅?zhǔn)俏覈?guó)南北朝時(shí)代的偉大科學(xué)家,在數(shù)學(xué)上有突出貢獻(xiàn),他在實(shí)踐的基礎(chǔ)上提出了體積計(jì)算原理(祖暅原理):冪勢(shì)既同,則積不容異.教材中的探究與發(fā)現(xiàn)利用祖暅原理將半球的體積轉(zhuǎn)化為一個(gè)圓柱與一個(gè)圓錐的體積之差,從而得出球的體積計(jì)算公式.如圖(1)是一種四腳帳篷的示意圖,用任意平行于帳篷底面的平面截帳篷,得截面四邊形為正方形,該帳篷的三視圖如圖(2)所示,其中正視圖的投影線方向垂直于平面,正視圖和側(cè)視圖中的曲線均為半徑為1的半圓.模仿上述球的體積計(jì)算方法,得該帳篷的體積為( ).

圖(1 圖(2

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸入的,則輸出的

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足:),數(shù)列滿足:,),數(shù)列的前項(xiàng)和為

1)求數(shù)列的通項(xiàng)公式;

2)求證:數(shù)列是等比數(shù)列;

3)求證:數(shù)列是遞增數(shù)列;若當(dāng)且僅當(dāng)時(shí),取得最小值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,過(guò)定點(diǎn)作不垂直于x軸的直線,交拋物線于AB兩點(diǎn).

1)設(shè)O為坐標(biāo)原點(diǎn),求證:為定值;

2)設(shè)線段的垂直分線與x軸交于點(diǎn),求n的取值范圍;

3)設(shè)點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為D,求證:直線過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=2xlnx+1

1)求曲線yfx)在點(diǎn)(efe))處的切線方程;

2)若關(guān)于x的不等式fxx2+ax在(,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體ABCED中,BECD,平面ABED⊥平面BCE.在梯形ABED中,ABDE,BEABDE=BE=CE=2ABMBC的中點(diǎn),點(diǎn)N在線段DE上,且滿足DN=DE

1)求證:MN∥平面ACD;

2)若AB=2,求點(diǎn)N到平面ABC的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案