A. | 2+$\sqrt{3}$ | B. | 2-$\sqrt{3}$ | C. | 1 | D. | 2 |
分析 由題意設(shè)$\overrightarrow{a}=(1,\sqrt{3})$,$\overrightarrow=(3,0)$,再設(shè)$\overrightarrow{c}=(x,y)$,由($\overrightarrow{c}$-2$\overrightarrow{a}$)•($\overrightarrow{c}$-$\frac{2}{3}$$\overrightarrow$)=0可得$\overrightarrow{c}$的終點(diǎn)的軌跡,數(shù)形結(jié)合即可得到|$\overrightarrow$-$\overrightarrow{c}$|的最小值.
解答 解:∵|$\overrightarrow{a}$|=2,|$\overrightarrow$|=$\overrightarrow{a}$•$\overrightarrow$=3,
∴設(shè)$\overrightarrow{a}=(1,\sqrt{3})$,$\overrightarrow=(3,0)$,
再設(shè)$\overrightarrow{c}=(x,y)$,→
由($\overrightarrow{c}$-2$\overrightarrow{a}$)•($\overrightarrow{c}$-$\frac{2}{3}$$\overrightarrow$)=0,
得(x-2,y-$2\sqrt{3}$)•(x-2,y)=0,
即$(x-2)^{2}+(y-\sqrt{3})^{2}=3$.
∴$\overrightarrow{c}$的終點(diǎn)在以(2,$\sqrt{3}$)為圓心,以$\sqrt{3}$為半徑的圓上,
如圖,
∴|$\overrightarrow$-$\overrightarrow{c}$|的最小值是$\sqrt{(2-3)^{2}+(\sqrt{3}-0)^{2}}-\sqrt{3}=2-\sqrt{3}$.
故選:B.
點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查了數(shù)形結(jié)合的解題思想方法和數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 4 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{2}{3}$ | B. | -1 | C. | 1 | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}{a^3}$ | B. | $\frac{1}{3}{a^3}$ | C. | $\frac{1}{4}{a^3}$ | D. | $\frac{1}{6}{a^3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com