20.知點(diǎn)A,B分別為雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩個頂點(diǎn),點(diǎn)M在E上,△ABM為等腰三角形,且頂角為120°,則雙曲線E的離心率為( 。
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

分析 設(shè)M在雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左支上,由題意可得M的坐標(biāo)為(-2a,$\sqrt{3}$a),代入雙曲線方程可得a=b,再由離心率公式即可得到所求值.

解答 解:設(shè)M在雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左支上,
且MA=AB=2a,∠MAB=120°,
則M的坐標(biāo)為(-2a,$\sqrt{3}$a),
代入雙曲線方程可得,$\frac{4{a}^{2}}{{a}^{2}}$-$\frac{3{a}^{2}}{^{2}}$=1,
可得a=b,
c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{2}$a,
即有e=$\frac{c}{a}$=$\sqrt{2}$.
故選:D.

點(diǎn)評 本題考查雙曲線的方程和性質(zhì),主要考查雙曲線的離心率的求法,運(yùn)用任意角的三角函數(shù)的定義求得M的坐標(biāo)是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在單位圓中,大小為2弧度的圓心角所對弦的長度為2sin1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1和F2,左右頂點(diǎn)分別為A1和A2,過焦點(diǎn)F2與x軸垂直的直線和雙曲線的一個交點(diǎn)為P,若|$\overrightarrow{P{A}_{1}}$|是|$\overrightarrow{{F}_{1}{F}_{2}}$|和|$\overrightarrow{{A}_{1}{F}_{2}}$|的等比中項(xiàng),則該雙曲線的離心率為( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.$\sqrt{2}$+1D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{4|lo{g}_{2}x|,0<x<2}\\{\frac{1}{2}{x}^{2}-5x+12,x≥2}\end{array}\right.$,若存在實(shí)數(shù)a,b,c,d滿足f(a)=f(b)=f(c)=f(d),其中d>c>b>a>0,則c+d=10,a+b+c+d的取值范圍是(12,$\frac{25}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線與拋物線D:y2=2px(p>0)的準(zhǔn)線分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),雙曲線的離心率為$\frac{2\sqrt{3}}{3}$,△ABO的面積為2$\sqrt{3}$.
(Ⅰ)求雙曲線C的漸近線方程;
(Ⅱ)求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知A={(x,y)|ax+by=1},B={(x,y)|x≥0,y≥1,x+y≤2},若A∩B≠∅恒成立,則a2+b2+2a+3b的取值范圍是$[\frac{3}{4},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.雙曲線$\frac{y^2}{3}-\frac{x^2}{9}=1$的實(shí)軸長等于$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,若a=8,b=5,B=30°,則sinA=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖程序框圖的算法思路來源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”,執(zhí)行該程序框圖,若在框圖中輸入的a,b分別為30、18,則輸出的a為( 。
A.0B.2C.6D.14

查看答案和解析>>

同步練習(xí)冊答案