已知是三條不同的直線,是兩個不同的平面,下列命題為真命題的是(    )
A.若,,,則
B.若,,則
C.若,,則
D.若,,,則
B

試題分析:①應(yīng)加入m與n相交;②,而,所以
③必須加入;④有可能與m異面,所以真命題是②.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖. 直三棱柱ABC —A1B1C1中,A1B1= A1C1,點D、E分別是棱BC,CC1上的點(點D不同于點C),且AD⊥DE,F(xiàn)為B1C1的中點.
求證:(1)平面ADE⊥平面BCC1B1
(2)直線A1F∥平面ADE.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知四邊形ABCD 是矩形,PA⊥平面ABCD,M, N分別是AB, PC的中點.
(1)求證:MN∥平面PAD;
(2)求證:MN⊥DC;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖4,四邊形為正方形,平面,,于點,,交于點.

(1)證明:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱柱中,底面ABCD和側(cè)面都是矩形,E是CD的中點,,
.
(1)求證:;
(2)若平面與平面所成的銳二面角的大小為,求線段的長度.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,在幾何體ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,點F是AE的中點.求AB與平面BDF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是兩條不同的直線,是一個平面,則下列說法正確的是(     )
A.若,則B.若,則
C.若,則D.若,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知為異面直線,平面,平面.平面α與β外的直線滿足,則( )
A.,且B.,且
C.相交,且交線垂直于D.相交,且交線平行于

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,側(cè)棱PA的長為2,且PAAB、AD的夾角都等于600,PC的中點,設(shè)
(1)試用表示出向量;
(2)求的長.

查看答案和解析>>

同步練習冊答案