【題目】已知函數(shù),且滿足.
(1)求實數(shù)的值;
(2)判斷函數(shù)在區(qū)間上的單調(diào)性,并用單調(diào)性的定義證明;
(3)若關于的方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.
【答案】(1);(2)單調(diào)遞增,證明見解析;(3).
【解析】
(1)根據(jù)計算的值,注意的限制;
(2)定義法證明的步驟:先假設的范圍和大小關系,然后通過計算判斷與的大小關系,最后根據(jù)判斷結果說明單調(diào)性即可;
(3)將問題轉化為圖象的交點問題:作出的草圖,計算當直線與的圖象有個交點時的范圍即為所求.
(1)因為且,所以,所以或(舍),則;
(2)判斷:單調(diào)遞增;
證明:因為,所以,
任取,所以,
又因為,所以,,
所以,所以在上單調(diào)遞增;
(3)作出與圖象如下圖所示:
可看作是繞原點旋轉的直線(不與軸重合),
因為方程有三個不同的實數(shù)解,所以與圖象有三個不同交點,
則有,臨界位置:與在的圖象相切,此時,
不妨令:,所以,所以,所以,
此時有,所以,所以切點為,綜上:.
科目:高中數(shù)學 來源: 題型:
【題目】當函數(shù)的自變量取值區(qū)間與值域區(qū)間相同時,我們稱這樣的區(qū)間為該函數(shù)的保值區(qū)間,函數(shù)的保值區(qū)間有、、三種形式,以下四個二次函數(shù)圖像的對稱軸是直線,從圖像可知,有二個保值區(qū)間的函數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等邊的邊長為,點,分別是,上的點,且滿足 (如圖(1)),將沿折起到的位置,使二面角成直二面角,連接,(如圖(2)).
(1)求證:平面;
(2)在線段上是否存在點,使直線與平面所成的角為?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓C過定點F(2,0),且與直線x=-2相切,圓心C的軌跡為E,
(1)求圓心C的軌跡E的方程;
(2)若直線l交E與P,Q兩點,且線段PQ的中心點坐標(1,1),求|PQ|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知O是坐標原點,拋物線的焦點為F,過F且斜率為1的直線交拋物線C于A,B兩點,Q為拋物線C的準線上一點,且.
(1)求Q點的坐標;
(2)設與直線垂直的直線與拋物線C交于M,N兩點,過M,N分別作拋物線C的切線,設直線與交于點P,若,求外接圓的標準方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點.
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,命題p:函數(shù)在內(nèi)單調(diào)遞增;q:函數(shù)僅在處有極值.
(1)若命題q是真命題,求a的取值范圍;
(2)若命題是真命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:經(jīng)過點,A,B是拋物線C上異于點O的不同的兩點,其中O為原點.
(1)求拋物線C的方程,并求其焦點坐標和準線方程;
(2)若,求面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com