10.已知cotα=-2,求$\frac{4sinα-2cosα}{4cosα+3sinα}$的值.

分析 由已知及同角三角函數(shù)基本關系式可求tanα=-$\frac{1}{2}$,利用同角三角函數(shù)基本關系式化簡所求后代入計算即可得解.

解答 解:∵cotα=-2,可得:tanα=-$\frac{1}{2}$,
∴$\frac{4sinα-2cosα}{4cosα+3sinα}$=$\frac{4tanα-2}{4+3tanα}$=$\frac{4×(-\frac{1}{2})-2}{4+3×(-\frac{1}{2})}$=-$\frac{8}{5}$.

點評 本題主要考查了同角三角函數(shù)基本關系式在三角函數(shù)化簡求值中的應用,考查了轉化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.過點M(2,-1)作斜率為$\frac{1}{2}$的直線與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)相交于A,B兩個不同點,若M是AB的中點,則該橢圓的離心率e=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖所示,△ABC和△A′B′C′是在各邊的$\frac{1}{3}$處相交的兩個全等的正三角形,設△ABC的邊長為a,圖中列出了長度均為$\frac{a}{3}$的若干個向量,求:
(1)與$\overrightarrow{GH}$相等的向量;
(2)與$\overrightarrow{GH}$共線的向量;
(3)與$\overrightarrow{EA}$平行的向量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.函數(shù)y=$\sqrt{3}$sinx-cosx的最大值為2,最小值為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若tanα=-2,則sinα=( 。
A.$\frac{2\sqrt{5}}{5}$B.-$\frac{2\sqrt{5}}{5}$C.±$\frac{\sqrt{5}}{5}$D.±$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=sin2wx-sin2(wx-$\frac{π}{6}$)(x∈R,w為常數(shù)且$\frac{1}{2}$<w<1),函數(shù)f(x)的圖象關于直線x=π對稱.
(I)求函數(shù)f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C的對邊分別為a,b,c,若a=1,f($\frac{3}{5}$A)=$\frac{1}{4}$.求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若函數(shù)y=x3+x2+mx+1在[0,1]上的單調遞增,則m的取值范圍是[0,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知數(shù)列{an}的前n項和公式:Sn=2n2-26n.
(1)求通項公式,試判斷這個數(shù)列是等差數(shù)列嗎?
(2)求使得Sn最小的序號n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.命題“?x∈R,f(x)<g(x)<h(x)”的否定形式是( 。
A.?x0∈R,f(x0)≥g(x0)≥h(x0B.?x0∈R,f(x0)≥g(x0)或g(x0)≥h(x0
C.?x∈R,f(x)≥g(x)≥h(x)D.?x∈R,f(x)≥g(x)或g(x)≥h(x)

查看答案和解析>>

同步練習冊答案