分析 由已知及同角三角函數(shù)基本關系式可求tanα=-$\frac{1}{2}$,利用同角三角函數(shù)基本關系式化簡所求后代入計算即可得解.
解答 解:∵cotα=-2,可得:tanα=-$\frac{1}{2}$,
∴$\frac{4sinα-2cosα}{4cosα+3sinα}$=$\frac{4tanα-2}{4+3tanα}$=$\frac{4×(-\frac{1}{2})-2}{4+3×(-\frac{1}{2})}$=-$\frac{8}{5}$.
點評 本題主要考查了同角三角函數(shù)基本關系式在三角函數(shù)化簡求值中的應用,考查了轉化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2\sqrt{5}}{5}$ | B. | -$\frac{2\sqrt{5}}{5}$ | C. | ±$\frac{\sqrt{5}}{5}$ | D. | ±$\frac{2\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x0∈R,f(x0)≥g(x0)≥h(x0) | B. | ?x0∈R,f(x0)≥g(x0)或g(x0)≥h(x0) | ||
C. | ?x∈R,f(x)≥g(x)≥h(x) | D. | ?x∈R,f(x)≥g(x)或g(x)≥h(x) |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com