相關(guān)習(xí)題
 0  108292  108300  108306  108310  108316  108318  108322  108328  108330  108336  108342  108346  108348  108352  108358  108360  108366  108370  108372  108376  108378  108382  108384  108386  108387  108388  108390  108391  108392  108394  108396  108400  108402  108406  108408  108412  108418  108420  108426  108430  108432  108436  108442  108448  108450  108456  108460  108462  108468  108472  108478  108486  266669 

科目: 來(lái)源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):12.2 離散型隨機(jī)變量的期望值和方差(解析版) 題型:選擇題

如果隨機(jī)變量ξ~B(n,p),且Eξ=7,Dξ=6,則p等于( )
A.
B.
C.
D.

查看答案和解析>>

科目: 來(lái)源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):12.2 離散型隨機(jī)變量的期望值和方差(解析版) 題型:選擇題

一牧場(chǎng)有10頭牛,因誤食含有病毒的飼料而被感染,已知該病的發(fā)病率為0.02.設(shè)發(fā)病的牛的頭數(shù)為ξ,則Dξ等于( )
A.0.2
B.0.8
C.0.196
D.0.804

查看答案和解析>>

科目: 來(lái)源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):12.2 離散型隨機(jī)變量的期望值和方差(解析版) 題型:選擇題

設(shè)服從二項(xiàng)分布B~(n,p)的隨機(jī)變量ξ的期望和方差分別是2.4與1.44,則二項(xiàng)分布的參數(shù)n、p的值為( )
A.n=4,p=0.6
B.n=6,p=0.4
C.n=8,p=0.3
D.n=24,p=0.1

查看答案和解析>>

科目: 來(lái)源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):12.2 離散型隨機(jī)變量的期望值和方差(解析版) 題型:選擇題

一射手對(duì)靶射擊,直到第一次命中為止每次命中的概率為0.6,現(xiàn)有4顆子彈,命中后的剩余子彈數(shù)目ξ的期望為( )
A.2.44
B.3.376
C.2.376
D.2.4

查看答案和解析>>

科目: 來(lái)源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):12.2 離散型隨機(jī)變量的期望值和方差(解析版) 題型:解答題

設(shè)一次試驗(yàn)成功的概率為p,進(jìn)行100次獨(dú)立重復(fù)試驗(yàn),當(dāng)p=    時(shí),成功次數(shù)的標(biāo)準(zhǔn)差的值最大,其最大值為   

查看答案和解析>>

科目: 來(lái)源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):12.2 離散型隨機(jī)變量的期望值和方差(解析版) 題型:解答題

甲從學(xué)校乘車(chē)回家,途中有3個(gè)交通崗,假設(shè)在各交通崗遇紅燈的事件是相互獨(dú)立的,并且概率都是,則甲回家途中遇紅燈次數(shù)的期望為   

查看答案和解析>>

科目: 來(lái)源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):12.2 離散型隨機(jī)變量的期望值和方差(解析版) 題型:解答題

有兩臺(tái)自動(dòng)包裝機(jī)甲與乙,包裝重量分別為隨機(jī)變量ξ1、ξ2,已知Eξ1=Eξ2,Dξ1>Dξ2,則自動(dòng)包裝機(jī)     的質(zhì)量較好.

查看答案和解析>>

科目: 來(lái)源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):12.2 離散型隨機(jī)變量的期望值和方差(解析版) 題型:解答題

設(shè)ξ是一個(gè)離散型隨機(jī)變量,其分布列如下表,試求Eξ、Dξ.

查看答案和解析>>

科目: 來(lái)源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):12.2 離散型隨機(jī)變量的期望值和方差(解析版) 題型:解答題

若ξ是離散型隨機(jī)變量,P(ξ=x1)=,P(ξ=x2)=,且x1<x2,又知Eξ=,Dξ=.求ξ的分布列.

查看答案和解析>>

科目: 來(lái)源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):12.2 離散型隨機(jī)變量的期望值和方差(解析版) 題型:解答題

人壽保險(xiǎn)中(某一年齡段),在一年的保險(xiǎn)期內(nèi),每個(gè)被保險(xiǎn)人需交納保費(fèi)a元,被保險(xiǎn)人意外死亡則保險(xiǎn)公司賠付3萬(wàn)元,出現(xiàn)非意外死亡則賠付1萬(wàn)元.經(jīng)統(tǒng)計(jì)此年齡段一年內(nèi)意外死亡的概率是p1,非意外死亡的概率為p2,則a需滿(mǎn)足什么條件,保險(xiǎn)公司才可能盈利?

查看答案和解析>>

同步練習(xí)冊(cè)答案