相關習題
 0  108864  108872  108878  108882  108888  108890  108894  108900  108902  108908  108914  108918  108920  108924  108930  108932  108938  108942  108944  108948  108950  108954  108956  108958  108959  108960  108962  108963  108964  108966  108968  108972  108974  108978  108980  108984  108990  108992  108998  109002  109004  109008  109014  109020  109022  109028  109032  109034  109040  109044  109050  109058  266669 

科目: 來源:2010年江蘇省無錫市江陰市成化高級中學高考數學模擬試卷(01)(解析版) 題型:解答題

數列{an}是等差數列S9=18,Sn=240,an-4=30(n>9),則n的值為    

查看答案和解析>>

科目: 來源:2010年江蘇省無錫市江陰市成化高級中學高考數學模擬試卷(01)(解析版) 題型:解答題

已知有序實數對(a,b)滿足a∈[O,3],b∈[0,2],則關于x的一元二次方程x2+2ax+b2=0有實數根的概率是    

查看答案和解析>>

科目: 來源:2010年江蘇省無錫市江陰市成化高級中學高考數學模擬試卷(01)(解析版) 題型:解答題

已知函數的圖象與直線y=-1的交點中最近的兩點間的距離為,則函數f(x)的最小正周期等于    

查看答案和解析>>

科目: 來源:2010年江蘇省無錫市江陰市成化高級中學高考數學模擬試卷(01)(解析版) 題型:解答題

?存在唯一的實數λ,使;
?存在不全為零的實數λ,μ,使λ;
不共線?若存在實數λ,μ使λ,則λ=μ=0;
不共線?不存在實數λ,μ使λ.下列命題是真命題的是     (填序號)

查看答案和解析>>

科目: 來源:2010年江蘇省無錫市江陰市成化高級中學高考數學模擬試卷(01)(解析版) 題型:解答題

以下偽代碼:
Read  x;
If  x≤-1  Then;
f(x)←x+2;
Else;
If-1<x≤1  Then;
f(x)←x2;
Else;f(x)←-x+2;
End  If;
Print  f(x);
根據以上偽代碼,若函數g(x)=f(x)-m在R上有且只有兩個零點,則實數m的取值范圍是   

查看答案和解析>>

科目: 來源:2010年江蘇省無錫市江陰市成化高級中學高考數學模擬試卷(01)(解析版) 題型:解答題

設P是橢圓上任意一點,A和F分別是橢圓的左頂點和右焦點,則的最小值為   

查看答案和解析>>

科目: 來源:2010年江蘇省無錫市江陰市成化高級中學高考數學模擬試卷(01)(解析版) 題型:解答題

已知函數f(x),x∈R滿足f(2)=3,且f(x)在R上的導數滿足f/(x)-1<0,則不等式f(x2)<x2+1的解集為    

查看答案和解析>>

科目: 來源:2010年江蘇省無錫市江陰市成化高級中學高考數學模擬試卷(01)(解析版) 題型:解答題

某校從參加高一年級期末考試的學生中抽出60名學生,并統(tǒng)計了他們的物理成績(成績均為整數且滿分為100分),把其中不低于50分的分成五段[50,60),[60,70)…[90,100]后畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求出物理成績低于50分的學生人數;
(2)估計這次考試物理學科及格率(60分及以上為及格)
(3)從物理成績不及格的學生中選兩人,求他們成績至少有一個不低于50分的概率.

查看答案和解析>>

科目: 來源:2010年江蘇省無錫市江陰市成化高級中學高考數學模擬試卷(01)(解析版) 題型:解答題

某化工企業(yè)2007年底投入100萬元,購入一套污水處理設備.該設備每年的運轉費用是0.5萬元,此外每年都要花費一定的維護費,第一年的維護費為2萬元,由于設備老化,以后每年的維護費都比上一年增加2萬元.
(1)求該企業(yè)使用該設備x年的年平均污水處理費用y(萬元);
(2)問為使該企業(yè)的年平均污水處理費用最低,該企業(yè)幾年后需要重新更換新的污水處理設備?

查看答案和解析>>

科目: 來源:2010年江蘇省無錫市江陰市成化高級中學高考數學模擬試卷(01)(解析版) 題型:解答題

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是直線梯形,∠ADC為直角,AD∥BC,AB⊥AC,AC=AB=2,G是△PAC的重心,E為PB中點,F在線段BC上,且CF=2FB.
(1)證明:FG∥平面PAB;
(2)證明:FG⊥AC;
(3)求二面角P-CD-A的一個三角函數值,使得FG⊥平面AEC

查看答案和解析>>

同步練習冊答案