科目: 來源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題
若cos(-a)-cos(2p-a)=,a是第二象限的角,則tana=____________
查看答案和解析>>
科目: 來源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題
給出下列函數(shù):① f(x)=sin(―2x);②f(x)=sinx+cosx;③ f(x)=sinxcosx;
④ f(x)=;⑤ f(x)=|cos2x|
其中,以p為最小正周期且為偶函數(shù)的是
查看答案和解析>>
科目: 來源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題
M是圓+=4上一動(dòng)點(diǎn),N(3,0),則線段MN中點(diǎn)的軌跡方程是_________
查看答案和解析>>
科目: 來源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
在△ABC中,已知B=45°,D是BC邊上的一點(diǎn),AD=10,AC=14,DC=6,
求⑴ ∠ADB的大;⑵ BD的長.
【解析】本試題主要考查了三角形的余弦定理和正弦定理的運(yùn)用
第一問中,∵cos∠ADC=
==-∴ cos∠ADB=cos(180°-∠ADC)=-cos∠ADC=∴ cos∠ADB=60°
第二問中,結(jié)合正弦定理∵∠DAB=180°-∠ADB-∠B=75°
由= 得BD==5(+1)
解:⑴ ∵cos∠ADC=
==-,……………………………3分
∴ cos∠ADB=cos(180°-∠ADC)=-cos∠ADC=, ……………5分
∴ cos∠ADB=60° ……………………………6分
⑵ ∵∠DAB=180°-∠ADB-∠B=75° ……………………………7分
由= ……………………………9分
得BD==5(+1)
查看答案和解析>>
科目: 來源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
已知sina=,aÎ(,p),cosb=-,b是第三象限的角.
⑴ 求cos(a-b)的值;
⑵ 求sin(a+b)的值;
⑶ 求tan2a的值.
【解析】第一問中∵ aÎ(,p),∴ cosa=-=-, ∵ b是第三象限的角,
∴ sinb=-=-,
cos(a-b)=cosa·cosb+sina·sinb =(-)×(-)+×(-)=-
⑵ 中sin(a+b)=sina·cosb+cosa·sinb =×(-)+(-)×(-)= ⑶ 利用二倍角的正切公式得到!遲ana==- ∴tan2a= ==-
解∵ aÎ(,p),∴ cosa=-=-, …………1分
∵ b是第三象限的角,∴ sinb=-=-, ………2分
⑴ cos(a-b)=cosa·cosb+sina·sinb …………3分
=(-)×(-)+×(-)=- ………………5分
⑵ sin(a+b)=sina·cosb+cosa·sinb ……………………6分
=×(-)+(-)×(-)= …………………8分
⑶ ∵tana==- …………………9分
∴tan2a= ………………10分
==-
查看答案和解析>>
科目: 來源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
求圓心在直線y=-2x上,并且經(jīng)過點(diǎn)A(2,-1),與直線x+y=1相切的圓的方程.
【解析】利用圓心和半徑表示圓的方程,首先
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)
∴r==,
故所求圓的方程為:+=2
解:法一:
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2) ……………………8分
∴r==, ………………………10分
故所求圓的方程為:+=2 ………………………12分
法二:由條件設(shè)所求圓的方程為:+=
, ………………………6分
解得a=1,b=-2, =2 ………………………10分
所求圓的方程為:+=2 ………………………12分
其它方法相應(yīng)給分
查看答案和解析>>
科目: 來源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
⑴ 求-的值;
⑵ 已知tana=3,求的值.
【解析】第一問中利用-
第二問,借助于二倍角的余弦公式和正弦公式,則有
查看答案和解析>>
科目: 來源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
在△ABC中,a、b、c分別是角A、B、C的對邊,cosB=.
⑴ 若cosA=-,求cosC的值; ⑵ 若AC=,BC=5,求△ABC的面積.
【解析】第一問中sinB==, sinA==
cosC=cos(180°-A-B)=-cos(A+B) =sinA.sinB-cosA·cosB
=×-(-)×=
第二問中,由=+-2AB×BC×cosB得 10=+25-8AB
解得AB=5或AB=3綜合得△ABC的面積為或
解:⑴ sinB==, sinA==,………………2分
∴cosC=cos(180°-A-B)=-cos(A+B) ……………………3分
=sinA.sinB-cosA·cosB ……………………4分
=×-(-)×= ……………………6分
⑵ 由=+-2AB×BC×cosB得 10=+25-8AB ………………7分
解得AB=5或AB=3, ……………………9分
若AB=5,則S△ABC=AB×BC×sinB=×5×5×= ………………10分
若AB=3,則S△ABC=AB×BC×sinB=×5×3×=……………………11分
綜合得△ABC的面積為或
查看答案和解析>>
科目: 來源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=cos(2x+)+-+sinx·cosx
⑴ 求函數(shù)f(x)的單調(diào)減區(qū)間; ⑵ 若xÎ[0,],求f(x)的最值;
⑶ 若f(a)=,2a是第一象限角,求sin2a的值.
【解析】第一問中,利用f(x)=cos2x-sin2x-cos2x+sin2x=sin2x-cos2x=sin(2x-)令+2kp≤2x-≤+2kp,
解得+kp≤x≤+kp
第二問中,∵xÎ[0, ],∴2x-Î[-,],
∴當(dāng)2x-=-,即x=0時(shí),f(x)min=-,
當(dāng)2x-=, 即x=時(shí),f(x)max=1
第三問中,(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp
∴ 2kp-<2a-<+2kp,∴ cos(2a-)=
利用構(gòu)造角得到sin2a=sin[(2a-)+]
解:⑴ f(x)=cos2x-sin2x-cos2x+sin2x ………2分
=sin2x-cos2x=sin(2x-) ……………………3分
⑴ 令+2kp≤2x-≤+2kp,
解得+kp≤x≤+kp ……………………5分
∴ f(x)的減區(qū)間是[+kp,+kp](kÎZ) ……………………6分
⑵ ∵xÎ[0, ],∴2x-Î[-,], ……………………7分
∴當(dāng)2x-=-,即x=0時(shí),f(x)min=-, ……………………8分
當(dāng)2x-=, 即x=時(shí),f(x)max=1 ……………………9分
⑶ f(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp
∴ 2kp-<2a-<+2kp,∴ cos(2a-)=, ……………………11分
∴ sin2a=sin[(2a-)+]
=sin(2a-)·cos+cos(2a-)·sin ………12分
=×+×=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com