科目: 來源: 題型:解答題
已知等差數列{an}中,公差d>0,其前n項和為Sn,且滿足a2·a3=45,a1+a4=14.
(1)求數列{an}的通項公式;
(2)設由bn= (c≠0)構成的新數列為{bn},求證:當且僅當c=-時,數列{bn}是等差數列.
查看答案和解析>>
科目: 來源: 題型:解答題
設等差數列{an}的前n項和為Sn,且S4=-62,S6=-75,求:
(1){an}的通項公式an及其前n項和Sn;
(2)|a1|+|a2|+|a3|+…+|a14|.
查看答案和解析>>
科目: 來源: 題型:解答題
我國是一個人口大國,隨著時間推移,老齡化現象越來越嚴重,為緩解社會和家庭壓力,決定采用養(yǎng)老儲備金制度.公民在就業(yè)的第一年交納養(yǎng)老儲備金,數目為a1,以后每年交納的數目均比上一年增加d(d>0),因此,歷年所交納的儲備金數目a1,a2,…,an是一個公差為d的等差數列.與此同時,國家給予優(yōu)惠的計息政策,不僅采用固定利率,而且計算復利.這就是說,如果固定利率為r(r>0),那么,在第n年末,第一年所交納的儲備金就變?yōu)閍1(1+r)n-1,第二年所交納的儲備金就變?yōu)閍2(1+r)n-2,…,以Tn表示到第n年所累計的儲備金總額.
(1)寫出Tn與Tn-1(n≥2)的遞推關系式;
(2)求證:Tn=An+Bn,其中{An}是一個等比數列,{Bn}是一個等差數列.
查看答案和解析>>
科目: 來源: 題型:解答題
已知數列{an}前n項和為Sn,且a2an=S2+Sn對一切正整數都成立.
(1)求a1,a2的值;
(2)設a1>0,數列前n項和為Tn,當n為何值時,Tn最大?并求出最大值.
查看答案和解析>>
科目: 來源: 題型:解答題
設{an}是公比不為1的等比數列,其前n項和為Sn,且a5,a3,a4成等差數列.
(1)求數列{an}的公比;
(2)證明:對任意k∈N+,Sk+2,Sk,Sk+1成等差數列.
查看答案和解析>>
科目: 來源: 題型:解答題
已知數列{an}是首項為1,公差為d的等差數列,數列{bn}是首項為1,公比為q(q>1)的等比數列.
(1)若a5=b5,q=3,求數列{an·bn}的前n項和;
(2)若存在正整數k(k≥2),使得ak=bk.試比較an與bn的大小,并說明理由..
查看答案和解析>>
科目: 來源: 題型:解答題
已知等差數列{an}滿足:an+1>an(n∈N*),a1=1,該數列的前三項分別加上1,1,3后順次成為等比數列{bn}的前三項.
(1)分別求數列{an}、{bn}的通項公式;
(2)設Tn=(n∈N*),若Tn+<c(c∈Z)恒成立,求c的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com