科目: 來源: 題型:解答題
如圖,是橢圓的左、右頂點,橢圓的離心率為,右準線的方程為.
(1)求橢圓方程;
(2)設(shè)是橢圓上異于的一點,直線交于點,以為直徑的圓記為. ①若恰好是橢圓的上頂點,求截直線所得的弦長;
②設(shè)與直線交于點,試證明:直線與軸的交點為定點,并求該定點的坐標.
查看答案和解析>>
科目: 來源: 題型:解答題
已知拋物線的頂點在坐標原點,焦點在軸上,拋物線上的點到的距離為2,且的橫坐標為1.直線與拋物線交于,兩點.
(1)求拋物線的方程;
(2)當(dāng)直線,的傾斜角之和為時,證明直線過定點.
查看答案和解析>>
科目: 來源: 題型:解答題
已知拋物線,點,過的直線交拋物線于兩點.
(1)若,拋物線的焦點與中點的連線垂直于軸,求直線的方程;
(2)設(shè)為小于零的常數(shù),點關(guān)于軸的對稱點為,求證:直線過定點
查看答案和解析>>
科目: 來源: 題型:解答題
已知為橢圓上的三個點,為坐標原點.
(1)若所在的直線方程為,求的長;
(2)設(shè)為線段上一點,且,當(dāng)中點恰為點時,判斷的面積是否為常數(shù),并說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
已知拋物線,點,過的直線交拋物線于兩點.
(1)若線段中點的橫坐標等于,求直線的斜率;
(2)設(shè)點關(guān)于軸的對稱點為,求證:直線過定點.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,矩形ABCD中,|AB|=2,|BC|=2.E,F(xiàn),G,H分別是矩形四條邊的中點,分別以HF,EG所在的直線為x軸,y軸建立平面直角坐標系,已知=λ,=λ,其中0<λ<1.
(1)求證:直線ER與GR′的交點M在橢圓Γ:+y2=1上;
(2)若點N是直線l:y=x+2上且不在坐標軸上的任意一點,F(xiàn)1、F2分別為橢圓Γ的左、右焦點,直線NF1和NF2與橢圓Γ的交點分別為P、Q和S、T.是否存在點N,使得直線OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT滿足kOP+kOQ+kOS+kOT=0?若存在,求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com