已知拋物線,點,過的直線交拋物線于兩點.
(1)若,拋物線的焦點與中點的連線垂直于軸,求直線的方程;
(2)設為小于零的常數(shù),點關(guān)于軸的對稱點為,求證:直線過定點
(1);(2)參考解析
解析試題分析:(1)由題意可得通過假設直線方程聯(lián)立拋物線方程,消去y可得一個一元二次方程,通過韋達定理寫出根與系數(shù)的關(guān)系.由中點的橫坐標等于拋物線的焦點坐標的橫坐標可解出直線的斜率k的值.即可求出直線方程.
(2)由直線方程與拋物線的方程聯(lián)立可得,關(guān)于點A,B的坐標關(guān)系,從而得到的坐標,寫出直線B的方程.由于其中含有A,B的坐標值,通過整理成為的形式即可知道,直線恒過定點.
試題解析:(1)解:由已知,拋物線的焦點坐標為.
設過點的直線的方程為,
由 得.
設,,則.
因為與中點的連線垂直于軸,所以,即.
解得 ,.
所以,直線的方程為.
(2)證明:設直線的方程為.
由 得,
則,且,即,且.
.
因為關(guān)于軸對稱,所以,直線,
又 ,,所以,
所以 .
因為 ,又同號,,
所以 ,
所以直線的方程為,
所以,直線恒過定點.
考點:1.直線與拋物線的關(guān)系.2.對稱性的問題.3.解方程的能力.4.過定點的問題.
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知橢圓C:+y2=1,A、B是四條直線x=±2,y=±1所圍成的兩個頂點.
(1)設P是橢圓C上任意一點,若=m+n,求證:動點Q(m,n)在定圓上運動,并求出定圓的方程;
(2)若M、N是橢圓C上兩上動點,且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為,且經(jīng)過點. 過它的兩個焦點,分別作直線與,交橢圓于A、B兩點,交橢圓于C、D兩點,且.
(1)求橢圓的標準方程;
(2)求四邊形的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知△的兩個頂點的坐標分別是,,且所在直線的斜率之積等于.
(1)求頂點的軌跡的方程,并判斷軌跡為何種圓錐曲線;
(2)當時,過點的直線交曲線于兩點,設點關(guān)于軸的對稱點為(不重合), 試問:直線與軸的交點是否是定點?若是,求出定點,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設橢圓的方程為 ,斜率為1的直線不經(jīng)過原點,而且與橢圓相交于兩點,為線段的中點.
(1)問:直線與能否垂直?若能,求之間滿足的關(guān)系式;若不能,說明理由;
(2)已知為的中點,且點在橢圓上.若,求之間滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,是橢圓的左、右頂點,橢圓的離心率為,右準線的方程為.
(1)求橢圓方程;
(2)設是橢圓上異于的一點,直線交于點,以為直徑的圓記為. ①若恰好是橢圓的上頂點,求截直線所得的弦長;
②設與直線交于點,試證明:直線與軸的交點為定點,并求該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(1)已知點和,過點的直線與過點的直線相交于點,設直線的斜率為,直線的斜率為,如果,求點的軌跡;
(2)用正弦定理證明三角形外角平分線定理:如果在中,的外角平分線與邊的延長線相交于點,則.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,已知橢圓的兩個焦點分別為、,且到直線的距離等于橢圓的短軸長.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若圓的圓心為(),且經(jīng)過、,是橢圓上的動點且在圓外,過作圓的切線,切點為,當的最大值為時,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com