相關(guān)習(xí)題
 0  169403  169411  169417  169421  169427  169429  169433  169439  169441  169447  169453  169457  169459  169463  169469  169471  169477  169481  169483  169487  169489  169493  169495  169497  169498  169499  169501  169502  169503  169505  169507  169511  169513  169517  169519  169523  169529  169531  169537  169541  169543  169547  169553  169559  169561  169567  169571  169573  169579  169583  169589  169597  266669 

科目: 來源:不詳 題型:解答題

如圖,拋物線頂點(diǎn)在原點(diǎn),圓x2+y2=4x的圓心是拋物線的焦點(diǎn),直線l過拋物線的焦點(diǎn),且斜率為2,直線l交拋物線與圓依次為A、B、C、D四點(diǎn).

(1)求拋物線的方程.
(2)求|AB|+|CD|的值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,M是拋物線y2=x上的一個(gè)定點(diǎn),動(dòng)弦ME、MF分別與x軸交于不同的點(diǎn)A、B,且|MA|=|MB|.證明:直線EF的斜率為定值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知兩點(diǎn)M(-1,0)、N(1,0),動(dòng)點(diǎn)P(x,y)滿足|
MN
|•|
NP
|-
MN
MP
=0,
(1)求點(diǎn)P的軌跡C的方程;
(2)假設(shè)P1、P2是軌跡C上的兩個(gè)不同點(diǎn),F(xiàn)(1,0),λ∈R,
FP1
FP2
,求證:
1
|FP1|
+
1
|FP2|
=1.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

橢圓
x2
45
+
y2
20
=1
的焦點(diǎn)分別為F1和F2,過原點(diǎn)O作直線與橢圓相交于A,B兩點(diǎn).若△ABF2的面積是20,則直線AB的方程是______.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知?jiǎng)訄A過定點(diǎn)D(1,0),且與直線l:x=-1相切.
(1)求動(dòng)圓圓心M的軌跡C;
(2)過定點(diǎn)D(1,0)作直線l交軌跡C于A、B兩點(diǎn),E是D點(diǎn)關(guān)于坐標(biāo)原點(diǎn)O的對稱點(diǎn),求證:∠AED=∠BED.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知兩點(diǎn)M(2,0)、N(-2,0),平面上動(dòng)點(diǎn)P滿足由|
MN
|•|
MP
|+
MN
MP
=0

(1)求動(dòng)點(diǎn)P的軌跡C的方程.
(2)是否存在實(shí)數(shù)m使直線x+my-4=0(m∈R)與曲線C交于A、B兩點(diǎn),且OA⊥OB?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)其右準(zhǔn)線交x軸于點(diǎn)A,雙曲線虛軸的下端點(diǎn)為B,過雙曲線的右焦點(diǎn)F(c,0)作垂直于x軸的直線交雙曲線于點(diǎn)P,若點(diǎn)D滿足:2
OD
=
OF
+
OP
(O為原點(diǎn))且
AB
AD
(λ≠0)

(1)求雙曲線的離心率;
(2)若a=2,過點(diǎn)B的直線l交雙曲線于M、N兩點(diǎn),問在y軸上是否存在定點(diǎn)C,使?
CM
CN
為常數(shù),若存在,求出C點(diǎn)的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線C:y2=8x的焦點(diǎn)為F.橢圓Σ的中心在坐標(biāo)原點(diǎn),離心率e=
1
2
,并以F為一個(gè)焦點(diǎn).
(1)求橢圓Σ的標(biāo)準(zhǔn)方程;
(2)設(shè)A1A2是橢圓Σ的長軸(A1在A2的左側(cè)),P是拋物線C在第一象限的一點(diǎn),過P作拋物線C的切線,若切線經(jīng)過A1,求證:tan∠A1PA2=
2

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知點(diǎn)P(-1,
3
2
)是橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)上一點(diǎn),F(xiàn)1、F2分別是橢圓C的左、右焦點(diǎn),O是坐標(biāo)原點(diǎn),PF1⊥x軸.
①求橢圓C的方程;
②設(shè)A、B是橢圓C上兩個(gè)動(dòng)點(diǎn),滿足
PA
+
PB
PO
(0<λ<4,且λ≠2)求直線AB的斜率.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知橢圓
x2
16
+
y2
12
=1,點(diǎn)P為其上一點(diǎn),F(xiàn)1、F2為橢圓的焦點(diǎn),Q為射線F1P延長線上一點(diǎn),且|PQ|=|PF2|,設(shè)R為F2Q的中點(diǎn).
(1)當(dāng)P點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),求R形成的軌跡方程;
(2)設(shè)點(diǎn)R形成的曲線為C,直線l:y=k(x+4
2
)與曲線C相交于A、B兩點(diǎn),若∠AOB=90°時(shí),求k的值.

查看答案和解析>>

同步練習(xí)冊答案