相關(guān)習(xí)題
 0  171248  171256  171262  171266  171272  171274  171278  171284  171286  171292  171298  171302  171304  171308  171314  171316  171322  171326  171328  171332  171334  171338  171340  171342  171343  171344  171346  171347  171348  171350  171352  171356  171358  171362  171364  171368  171374  171376  171382  171386  171388  171392  171398  171404  171406  171412  171416  171418  171424  171428  171434  171442  266669 

科目: 來源:不詳 題型:解答題

某果園要將一批水果用汽車從所在城市甲運(yùn)至銷售商所在城市乙,已知從城市甲到城市乙只有兩條公路,且運(yùn)費(fèi)由果園承擔(dān).若果園恰能在約定日期(×月×日)將水果送到,則銷售商一次性支付給果園20萬元;若在約定日期前送到,每提前一天銷售商將多支付給果園1萬元;若在約定日期后送到,每遲到一天銷售商將少支付給果園1萬元.為保證水果新鮮度,汽車只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運(yùn)送水果,已知下表內(nèi)的信息:
(注:毛利潤=銷售商支付給果園的費(fèi)用-運(yùn)費(fèi))
(Ⅰ)記汽車走公路1時(shí)果園獲得的毛利潤為ξ(單位:萬元),求ξ的分布列和數(shù)學(xué)期望Eξ;
(Ⅱ)假設(shè)你是果園的決策者,你選擇哪條公路運(yùn)送水果有可能讓果園獲得的毛利潤更多?

查看答案和解析>>

科目: 來源:不詳 題型:解答題

某中學(xué)舉行了一次“環(huán)保知識競賽”活動(dòng).為了了解本次競賽學(xué)生成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì).按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).

(Ⅰ)求樣本容量n和頻率分布直方圖中x、y的值;
(Ⅱ)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取3名同學(xué)到市政廣場參加環(huán)保知識宣傳的志愿者活動(dòng),設(shè)ξ表示所抽取的3名同學(xué)中得分在[80,90)的學(xué)生個(gè)數(shù),求ξ的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

有A、B、C三個(gè)盒子,每個(gè)盒子中放有紅、黃、藍(lán)顏色的球各一個(gè),所有的球僅有顏色上的區(qū)別.
(Ⅰ)從每個(gè)盒子中任意取出一個(gè)球,記事件S為“取得紅色的三個(gè)球”,事件T為“取得顏色互不相同的三個(gè)球”,求P(S)和P(T);
(Ⅱ)先從A盒中任取一球放入B盒,再從B盒中任取一球放入C盒,最后從C盒中任取一球放入A盒,設(shè)此時(shí)A盒中紅球的個(gè)數(shù)為ξ,求ξ的分布列與數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

某學(xué)校為了選拔學(xué)生參加“XX市中學(xué)生知識競賽”,先在本校進(jìn)行選拔測試(滿分150分),若該校有100名學(xué)生參加選拔測試,并根據(jù)選拔測試成績作出如圖所示的頻率分布直方圖.
(Ⅰ)根據(jù)頻率分布直方圖,估算這100名學(xué)生參加選拔測試的平均成績;
(Ⅱ)若通過學(xué)校選拔測試的學(xué)生將代表學(xué)校參加市知識競賽,知識競賽分為初賽和復(fù)賽,初賽中每人最多有5次答題機(jī)會,累計(jì)答對3題或答錯(cuò)3題即終止,答對3題者方可參加復(fù)賽.假設(shè)參賽者甲答對每一個(gè)題的概率都是
2
3
,求甲在初賽中答題個(gè)數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通指數(shù)為T.其范圍為[0,10],分別有五個(gè)級別:T∈[0,2)暢通;T∈[2,4)基本暢通;T∈[4,6)輕度擁堵;T∈[6,8)中度擁堵;T∈[8,10]嚴(yán)重?fù)矶,晚高峰時(shí)段,從某市交通指揮中心選取了市區(qū)20個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制直方圖如圖所示.
(Ⅰ)這20個(gè)路段輕度擁堵、中度擁堵的路段各有多少個(gè)?
(Ⅱ)從這20個(gè)路段中隨機(jī)抽出的3個(gè)路段,用X表示抽取的中度擁堵的路段的個(gè)數(shù),求X的分布列及期望.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

新一屆中央領(lǐng)導(dǎo)集體非常重視勤儉節(jié)約,從“光盤行動(dòng)”到“節(jié)約辦春晚”.到飯店吃飯是吃光盤子或時(shí)打包帶走,稱為“光盤族”,否則稱為“非光盤族”.政治課上政治老師選派幾位同學(xué)組成研究性小組,從某社區(qū)[25,55]歲的人群中隨機(jī)抽取n人進(jìn)行了一次調(diào)查,得到如下統(tǒng)計(jì)表:
組數(shù)分組頻數(shù)頻率光盤族占本組比例
第1組[25,30)500.0530%
第2組[30,35)1000.1030%
第3組[35,40)1500.1540%
第4組[40,45)2000.2050%
第5組[45,50)ab65%
第6組[50,55)2000.2060%
(1)求a,b的值,并估計(jì)本社區(qū)[25,55)歲的人群中“光盤族”所占比例;
(2)從年齡段在[35,40)與[40,45)的“光盤族”中采用分層抽樣方法抽取8人參加節(jié)約糧食宣傳活動(dòng),并從這8人中選取2人作為領(lǐng)隊(duì).
(i)已知選取2人中1人來自[35,40)中的前提下,求另一人來自年齡段在[40,45)中的概率;
(ii)求2名領(lǐng)隊(duì)的年齡之和的期望值.(每個(gè)年齡段以中間值計(jì)算).

查看答案和解析>>

科目: 來源:不詳 題型:解答題

莆田四中高二年級設(shè)計(jì)了一個(gè)實(shí)驗(yàn)學(xué)科的能力考查方案:考生從6道備選題中一次性隨機(jī)抽取3道題,并獨(dú)立完成所抽取的3道題.規(guī)定:至少正確完成其中2道題的便可通過該學(xué)科的能力考查.已知6道備選題中考生甲能正確完成其中4道題,另2道題不能完成;考生乙正確完成每道題的概率都為
2
3
,且每道題正確完成與否互不影響.
(Ⅰ)求考生甲能通過該實(shí)驗(yàn)學(xué)科能力考查的概率;
(Ⅱ)記所抽取的3道題中,考生甲能正確完成的題數(shù)為ξ,寫出ξ的概率分布,并求Eξ及Dξ;
(Ⅲ)試用統(tǒng)計(jì)知識分析比較甲、乙考生在該實(shí)驗(yàn)學(xué)科上的能力水平.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

NBA總決賽采用7場4勝制,即若某隊(duì)先取勝4場則比賽結(jié)束.由于NBA有特殊的政策和規(guī)則,能進(jìn)入決賽的球隊(duì)實(shí)力都較強(qiáng),因此可以認(rèn)為,兩個(gè)隊(duì)在每一場比賽中取勝的概率相等.根據(jù)不完全統(tǒng)計(jì),主辦一場決賽,組織者有望通過出售電視轉(zhuǎn)播權(quán)、門票及零售商品、停車費(fèi)、廣告費(fèi)等收入獲取收益2000萬美元(相當(dāng)于籃球巨星科比的年薪).
(1)求所需比賽場數(shù)X的概率分布;
(2)求組織者收益的數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

甲、乙兩人參加某電視臺舉辦的答題闖關(guān)游戲,按照規(guī)則,甲先從6道備選題中一次性抽取3道題獨(dú)立作答,然后由乙回答剩余3題,每人答對其中2題就停止答題,即闖關(guān)成功.已知在6道被選題中,甲能答對其中的4道題,乙答對每道題的概率都是
2
3

(Ⅰ)求甲、乙至少有一人闖關(guān)成功的概率;
(Ⅱ)設(shè)甲答對題目的個(gè)數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

今年雷鋒日,某中學(xué)從高中三個(gè)年級選派4名教師和20名學(xué)生去當(dāng)雷鋒志愿者,學(xué)生的名額分配如下:
高一年級高二年級高三年級
10人6人4人
(I)若從20名學(xué)生中選出3人參加文明交通宣傳,求他們中恰好有1人是高一年級學(xué)生的概率;
(II)若將4名教師安排到三個(gè)年級(假設(shè)每名教師加入各年級是等可能的,且各位教師的選擇是相互獨(dú)立的),記安排到高一年級的教師人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案