科目: 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題八練習(xí)卷(解析版) 題型:選擇題
由曲線xy=1,直線y=x,y=3所圍成的平面圖形的面積為( )
A. B.2-ln 3 C.4+ln 3 D.4-ln 3
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題八練習(xí)卷(解析版) 題型:選擇題
設(shè)f(x)是定義在R上的增函數(shù),且對于任意的x都有f(2-x)+f(x)=0成立.如果實(shí)數(shù)m,n滿足不等式組則m2+n2的取值范圍是( )
A.(3,7) B.(9,25) C.(13,49) D.(9,49)
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題八練習(xí)卷(解析版) 題型:選擇題
閱讀程序框圖(如圖所示),如果輸出的函數(shù)值在區(qū)間[1,3]上,則輸入的實(shí)數(shù)x的取值范圍是( )
A.{x∈R|0≤x≤log23} B.{x∈R|-2≤x≤2}
C.{x∈R|0≤x≤log23或x=2} D.{x∈R|-2≤x≤log23或x=2}
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題八練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)f(x)=2x+1,x∈N*.若?x0,n∈N*,使f(x0)+f(x0+1)+…+f(x0+n)=63成立,則稱(x0,n)為函數(shù)f(x)的一個“生成點(diǎn)”.則函數(shù)f(x)的“生成點(diǎn)”共有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題八練習(xí)卷(解析版) 題型:填空題
已知隨機(jī)變量X服從正態(tài)分布N(2,σ2),且P(X<4)=0.8,則P(0<X<2)=________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題八練習(xí)卷(解析版) 題型:填空題
已知cos x= (x∈R),則cosx-=________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題八練習(xí)卷(解析版) 題型:填空題
已知向量與的夾角為120°,且||=3,||=2.若=λ+,且⊥,則實(shí)數(shù)λ的值為________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題八練習(xí)卷(解析版) 題型:填空題
若不等式x2+2xy≤a(x2+y2)對于一切正數(shù)x,y恒成立,則實(shí)數(shù)a的最小值為________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題八練習(xí)卷(解析版) 題型:解答題
在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且a=1,c=,cos C=
(1)求sin A的值;
(2)求△ABC的面積.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題八練習(xí)卷(解析版) 題型:解答題
已知向量p=(an,2n),q=(2n+1,-an+1),n∈N*,p與q垂直,且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=log2an+1,求數(shù)列{an·bn}的前n項(xiàng)和Sn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com