相關(guān)習(xí)題
 0  226955  226963  226969  226973  226979  226981  226985  226991  226993  226999  227005  227009  227011  227015  227021  227023  227029  227033  227035  227039  227041  227045  227047  227049  227050  227051  227053  227054  227055  227057  227059  227063  227065  227069  227071  227075  227081  227083  227089  227093  227095  227099  227105  227111  227113  227119  227123  227125  227131  227135  227141  227149  266669 

科目: 來源: 題型:選擇題

5.設(shè)x、y、z是兩兩不等的實(shí)數(shù),且滿足下列等式:$\root{6}{{x^3{(y-x)}^3}}+\root{6}{{x^3{(z-x)}^3}}=\root{6}{y-x}-\root{6}{x-z}$,則代數(shù)式x3+y3+z3-3xyz的值是( 。
A.0B.1
C.3D.條件不足,無法計(jì)算

查看答案和解析>>

科目: 來源: 題型:解答題

4.設(shè)數(shù)列{an}滿足a1=a,a2=b,2an+2=an+1+an
(1)設(shè)bn=an+1-an,證明:若a≠b,則{bn}是等比數(shù)列;
(2)若$\lim_{n→∞}({a_1}+{a_2}+…+{a_n})=4$,求a,b的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,△ABC三個(gè)頂點(diǎn)都在拋物線上,且△ABC的重心為拋物線的焦點(diǎn),若BC邊所在的直線方程為4x+y-20=0,則拋物線方程為( 。
A.y2=16xB.y2=8xC.y2=-16xD.y2=-8x

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知向量$\overrightarrow a,\overrightarrow b$為非零向量,$(\overrightarrow a-2\overrightarrow b)⊥\overrightarrow a,(\overrightarrow b-2\overrightarrow a)⊥\overrightarrow b$,則$\overrightarrow a,\overrightarrow b$夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目: 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=|2x-1|-|x+2|.
(1)解不等式:f(x)>0;
(2)若f(x)+3|x+2|≥|a-1|對(duì)一切實(shí)數(shù)x均成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

20.先閱讀參考材料,再解決此問題:
參考材料:求拋物線弧y=x2(0≤x≤2)與x軸及直線x=2圍成的封閉圖形的面積
解:把區(qū)間[0,2]進(jìn)行n等分,得n-1個(gè)分點(diǎn)A($\frac{2i}{n}$,0)(i=1,2,3,…,n-1),過分點(diǎn)Ai,作x軸的垂線,交拋物線于Bi,并如圖構(gòu)造n-1個(gè)矩形,先求出n-1個(gè)矩形的面積和Sn-1,再求$\underset{lim}{n→∞}$Sn-1,即是封閉圖形的面積,又每個(gè)矩形的寬為$\frac{2}{n}$,第i個(gè)矩形的高為($\frac{2i}{n}$)2,所以第i個(gè)矩形的面積為$\frac{2}{n}$•($\frac{2i}{n}$)2;
Sn-1=$\frac{2}{n}$[$\frac{4•{1}^{2}}{{n}^{2}}$+$\frac{4•{2}^{2}}{{n}^{2}}$+$\frac{4•{3}^{2}}{{n}^{2}}$+…+$\frac{4•(n-1)^{2}}{{n}^{2}}$]=$\frac{8}{{n}^{3}}$[12+22+32+…+(n-1)2]=$\frac{8}{{n}^{3}}$•$\frac{n(n-1)(2n-1)}{6}$
所以封閉圖形的面積為$\underset{lim}{n→∞}$$\frac{8}{{n}^{3}}$•$\frac{n(n-1)(2n-1)}{6}$=$\frac{8}{3}$
閱讀以上材料,并解決此問題:已知對(duì)任意大于4的正整數(shù)n,不等式$\sqrt{1-\frac{{1}^{2}}{{n}^{2}}}$+$\sqrt{1-\frac{{2}^{2}}{{n}^{2}}}$+$\sqrt{1-\frac{{3}^{2}}{{n}^{2}}}$+…+$\sqrt{1-\frac{(n-1)^{2}}{{n}^{2}}}$<an恒成立,則實(shí)數(shù)a的取值范圍為[$\frac{π}{4}$,+∞).

查看答案和解析>>

科目: 來源: 題型:填空題

19.在極坐標(biāo)下,定義兩個(gè)點(diǎn)(ρ1,θ1)和(ρ2,θ2)(ρ1,ρ2>0,0≤θ1,θ2≤2π)的“極坐標(biāo)中點(diǎn)“為($\frac{{ρ}_{1}+{ρ}_{2}}{2}$,$\frac{{θ}_{1}+{θ}_{2}}{2}$),設(shè)點(diǎn)A、B的極坐標(biāo)為(4,$\frac{π}{100}$)與(8,$\frac{51π}{100}$),設(shè)M為線段AB的中點(diǎn),N為點(diǎn)A、B的“極坐標(biāo)中點(diǎn)”,則線段MN的長(zhǎng)度的平方為56-36$\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知下列三個(gè)命題:
①若兩組數(shù)據(jù)的平均數(shù)相等,則它們的標(biāo)準(zhǔn)差也相等;
②在區(qū)間[-1,5]上隨機(jī)選取一個(gè)數(shù)x,則x≥3的概率為$\frac{2}{3}$;
③直線x+y+1=0與圓${x^2}+{y^2}=\frac{1}{2}$相切;
其中真命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目: 來源: 題型:填空題

17.定義在區(qū)間[x1,x2]上的函數(shù)y=f(x)的圖象為C,M是C上任意一點(diǎn),O為坐標(biāo)原點(diǎn),設(shè)向量$\overrightarrow{OA}=({{x_1},f({x_1})}),\overrightarrow{OB}=({{x_2},f({x_2})}),\overrightarrow{OM}=({x,y})$,且實(shí)數(shù)λ滿足x=λx1+(1-λ)x2,此時(shí)向量$\overrightarrow{ON}=λ\overrightarrow{OA}+({1-λ})\overrightarrow{OB}$.若$|{\overrightarrow{MN}}$|≤K恒成立,則稱函數(shù)y=f(x)在區(qū)間[x1,x2]上可在標(biāo)準(zhǔn)K下線性近似,其中K是一個(gè)確定的實(shí)數(shù).已知函數(shù)f(x)=x2-2x在區(qū)間[1,2]上可在標(biāo)準(zhǔn)K下線性近似,那么K的最小值是$\frac{1}{4}$.

查看答案和解析>>

科目: 來源: 題型:解答題

16.袋中有六張形狀、質(zhì)地等完全相同的卡片,其中紅色卡片四張,藍(lán)色卡片兩張,每張卡片都標(biāo)有一個(gè)數(shù)字,如莖葉圖所示:
(Ⅰ)從以上六張卡片中任取兩張,求這兩張卡片顏色相同的概率;
(Ⅱ)從以上六張卡片中任取兩張,求這兩張卡片數(shù)字之和小于50的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案