分析 yN-yM=λf(x1)+(1-λ)f(x2)-$[λ{x}_{1}+(1-λ){x}_{2}]^{2}$+2[λx1+(1-λ)x2]=$λ(1-λ)({x}_{1}-{x}_{2})^{2}$,由題意可得:$|\overrightarrow{MN}|$=|yN-yM|=|$λ(1-λ)({x}_{1}-{x}_{2})^{2}$|≤|λ(1-λ)|,再利用基本不等式的性質(zhì)即可得出.
解答 解:yN-yM=λf(x1)+(1-λ)f(x2)-$[λ{x}_{1}+(1-λ){x}_{2}]^{2}$+2[λx1+(1-λ)x2]
=$λ({x}_{1}^{2}-2{x}_{1})$+$(1-λ)({x}_{2}^{2}-2{x}_{2})$-$[λ{x}_{1}+(1-λ){x}_{2}]^{2}$+2[λx1+(1-λ)x2]
=$λ(1-λ)({x}_{1}-{x}_{2})^{2}$,
|x1-x2|≤|1-2|=1,
由題意可得:$|\overrightarrow{MN}|$=|yN-yM|=|$λ(1-λ)({x}_{1}-{x}_{2})^{2}$|≤|λ(1-λ)|≤$(\frac{λ+1-λ}{2})^{2}$=$\frac{1}{4}$,
由于$|{\overrightarrow{MN}}$|≤K恒成立,
∴$K≥\frac{1}{4}$,
∴K的最小值為$\frac{1}{4}$.
故答案為:$\frac{1}{4}$.
點評 本題考查了向量的坐標運算性質(zhì)、模的計算公式、二次函數(shù)的性質(zhì)、基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 都不是紅球 | B. | 恰有1個紅球 | C. | 至少有1個紅球 | D. | 至多有1個紅球 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-2,3) | B. | (-3,2) | C. | (-∞,-3)∪(2,+∞) | D. | (-∞,-2)∪(3,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com