相關(guān)習題
 0  227729  227737  227743  227747  227753  227755  227759  227765  227767  227773  227779  227783  227785  227789  227795  227797  227803  227807  227809  227813  227815  227819  227821  227823  227824  227825  227827  227828  227829  227831  227833  227837  227839  227843  227845  227849  227855  227857  227863  227867  227869  227873  227879  227885  227887  227893  227897  227899  227905  227909  227915  227923  266669 

科目: 來源: 題型:填空題

14.△ABC中,已知a=6,∠B=60°,若解此三角形時有且只有唯一解,則b的值應(yīng)滿足b=3$\sqrt{3}$或b≥6.

查看答案和解析>>

科目: 來源: 題型:填空題

13.在如圖所示的偽代碼中,若輸入x=0,則輸出y=-1.

查看答案和解析>>

科目: 來源: 題型:填空題

12.2017年某地區(qū)高考改革方案出臺,選考科目有:思想政治,歷史,地理,物理,化學,生命科學,要求考生從中自選三門參加高考,甲,乙兩名學生各自選考3門課程(每門課程被選中的機會相等),兩位同學約定共同選擇思想政治,不選物理,則他們選考的3門課程都相同的概率是$\frac{1}{6}$.

查看答案和解析>>

科目: 來源: 題型:解答題

11.在△ABC中,cosA=-$\frac{5}{13}$,cosB=$\frac{3}{5}$.求sinC的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知向量的集合A={$\overrightarrow{m}$|$\overrightarrow{m}$=(x,y),x2+y2≤1}中的任意兩個向量$\overrightarrow{{m}_{1}}$,$\overrightarrow{{m}_{2}}$與兩個非負實數(shù)a,b,那么|a$\overrightarrow{{m}_{1}}$+b$\overrightarrow{{m}_{2}}$|與a+b的關(guān)系為( 。
A.|a$\overrightarrow{{m}_{1}}$+b$\overrightarrow{{m}_{2}}$|>a+bB.|a$\overrightarrow{{m}_{1}}$+b$\overrightarrow{{m}_{2}}$|≤a+bC.|a$\overrightarrow{{m}_{1}}$+b$\overrightarrow{{m}_{2}}$|≥a+bD.|a$\overrightarrow{{m}_{1}}$+b$\overrightarrow{{m}_{2}}$|<a+b

查看答案和解析>>

科目: 來源: 題型:填空題

9.sin410°cos145°+sin680°sin(-35°)=$\frac{\sqrt{2}-\sqrt{6}}{4}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知函數(shù)f(x)=x2+4x+4,若存在實數(shù)t,當x∈[1,t]時,f(x+a)≤4x恒成立,則實數(shù)t的最大值為(  )
A.4B.7C.8D.9

查看答案和解析>>

科目: 來源: 題型:解答題

7.在銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足:2asin A=(2b-c)sin B+(2c-b)sinC.
(I) 求角A的大小:
(2)若a=2,求△ABC的周長l的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

6.某校為了了解學生的數(shù)學期中考試成績,從中抽取部分學生的分數(shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進行統(tǒng)計.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(Ⅰ)求樣本容量n和頻率分布直方圖中的x、y的值;
(Ⅱ)在選取的樣本中,從成績在80分以上(含80分)的學生中隨機抽取2名同學到市里參加數(shù)學競賽,求這2人的成績均在[90,100]內(nèi)的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

5.化簡:$\frac{1+cos2x}{tan\frac{x}{2}-cot\frac{x}{2}}$.

查看答案和解析>>

同步練習冊答案