相關習題
 0  228131  228139  228145  228149  228155  228157  228161  228167  228169  228175  228181  228185  228187  228191  228197  228199  228205  228209  228211  228215  228217  228221  228223  228225  228226  228227  228229  228230  228231  228233  228235  228239  228241  228245  228247  228251  228257  228259  228265  228269  228271  228275  228281  228287  228289  228295  228299  228301  228307  228311  228317  228325  266669 

科目: 來源: 題型:解答題

16.已知a≥0,當x為何值時,函數(shù)f(x)=(x2-2ax)•ex取得最小值?并證明你的結論.

查看答案和解析>>

科目: 來源: 題型:解答題

15.求f(x)=-|sin(x-$\frac{π}{4}$)|的單調區(qū)間.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.若m<0,則直線2mx-m2y-y+3=0的傾斜角的范圍是(  )
A.[0,$\frac{π}{4}$]B.[$\frac{π}{4}$,$\frac{π}{2}$)C.($\frac{π}{2}$,$\frac{3π}{4}$]D.[$\frac{3π}{4}$,π)

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=tcosφ}\\{y=-1+tsinφ}\end{array}\right.$ (t為參數(shù)),以平面直角坐標系xOy的原點O為極點,x軸的正半軸為極軸,取相同的長度單位建立極坐標系,曲線C的極坐標方程為ρ=2sin(θ+$\frac{π}{3}$)
(I)求直線l和曲線C的普通方程;
(Ⅱ)在直角坐標系中,過點B(0,1)作直線l的垂線,垂足為H,試以φ為參數(shù),求動點H軌跡的參數(shù)方程,并指出軌跡表示的曲線.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}cost}\\{y=\sqrt{2}sint}\end{array}\right.$(t為參數(shù)),C在點(1,1)處的切線為l,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.
(1)求l的極坐標方程;
(2)過點M(-$\frac{1}{4}$,$\frac{\sqrt{3}}{4}$)任作一條直線交曲線C于A,B兩點,求|AB|的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

11.在平面直角坐標系xOy中,曲線C的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{ta{n}^{2}α}{4}}\\{y=tanα}\end{array}\right.$(α是參數(shù)),直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=1+\frac{t}{2}}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$ (t是參數(shù)).
(1)求曲線C和直線l的普通方程,并指出曲線C的曲線類型;
(2)若直線l和曲線C相交于A、B兩點,求|AB|.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.不等式$\frac{1}{x-1}$>x+1的解集為( 。
A.{x|-$\sqrt{2}$<x<$\sqrt{2}$}B.{x|x>1}C.{x|x<-$\sqrt{2}$或1<x<$\sqrt{2}$}D.{x|1<x<$\sqrt{2}$}

查看答案和解析>>

科目: 來源: 題型:解答題

9.設集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}
(1)若A∩B=B,求實數(shù)a的值;
(2)若A∪B=B,求實數(shù)a的值.

查看答案和解析>>

科目: 來源: 題型:填空題

8.設函數(shù)f(x)=$\frac{x-1}{x-3}$,g(x)=$\frac{x-3}{\sqrt{x-1}}$,則f(x)•g(x)=$\sqrt{x-1}$,其中x>1且x≠3.

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x(x<0)}\\{-{x}^{2}(x≥0)}\end{array}\right.$,則不等式f[f(x)]≤3的解集為(-∞,$\sqrt{3}$].

查看答案和解析>>

同步練習冊答案