相關(guān)習(xí)題
 0  228197  228205  228211  228215  228221  228223  228227  228233  228235  228241  228247  228251  228253  228257  228263  228265  228271  228275  228277  228281  228283  228287  228289  228291  228292  228293  228295  228296  228297  228299  228301  228305  228307  228311  228313  228317  228323  228325  228331  228335  228337  228341  228347  228353  228355  228361  228365  228367  228373  228377  228383  228391  266669 

科目: 來(lái)源: 題型:選擇題

17.與雙曲線$\frac{y^2}{4}-\frac{x^2}{3}=1$共同的漸近線,且過(guò)點(diǎn)(-3,2)的雙曲線的標(biāo)準(zhǔn)方程是( 。
A.$\frac{y^2}{8}-\frac{x^2}{6}=1$B.$\frac{x^2}{6}-\frac{y^2}{8}=1$C.$\frac{x^2}{16}-\frac{y^2}{9}=1$D.$\frac{y^2}{9}-\frac{x^2}{16}=1$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

16.已知雙曲線x2-2y2=2的左、右兩個(gè)焦點(diǎn)為F1、F2,動(dòng)點(diǎn)P滿足|PF1|+|PF2|=4.
(1)求動(dòng)點(diǎn)P的軌跡E的方程;
(2)設(shè)過(guò)F2且不垂直于坐標(biāo)軸的動(dòng)直線l交軌跡E于A、B兩點(diǎn),問(wèn):線段OF2上是否存在一點(diǎn)D,使得以DA、DB為鄰邊的平行四邊形為菱形?作出判斷并證明.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

15.雙曲線C:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a>0,b>0)$的離心率為$\frac{5}{4}$,焦點(diǎn)到漸近線的距離為3,則C的實(shí)軸長(zhǎng)等于8.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

14.直線y=b與函數(shù)f(x)=x-1nx的圖象交于兩個(gè)不同的點(diǎn)A,B,其橫坐標(biāo)為x1,x2,且x1<x2
(1)求函數(shù)f(x)的單調(diào)區(qū)間和最小值;
(2)證明:x1x22<2.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

13.如圖,三棱錐P-ABC的體積為12,D為PB中點(diǎn),且EF$\stackrel{∥}{=}$MN$\stackrel{∥}{=}$$\frac{1}{2}$AC,則三棱柱BEF-DMN的體積為$\frac{9}{2}$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

12.如圖,四棱錐P-ABCD中,PA⊥底面ABCD,PC⊥AD.底面ABCD為梯形,AB∥DC,AB⊥BC,PA=AB=BC=1.
(1)求證:平面PAB⊥平面PCB;
(2)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

11.已知O為坐標(biāo)原點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點(diǎn),P是雙曲線右支上一點(diǎn),PM為∠F1PF2的角平分線,過(guò)F1作PM的垂線交PM于點(diǎn)M,則|OM|的長(zhǎng)度為( 。
A.aB.bC.$\frac{a}{2}$D.$\frac{2}$

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

10.已知雙曲線 $C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦點(diǎn)為F,雙曲線C與過(guò)原點(diǎn)的直線相交于A、B兩點(diǎn),連接AF,BF.若|AF|=6,|BF|=8,$cos∠BAF=\frac{3}{5}$,則該雙曲線的離心率為5.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

9.已知四邊形ABCD為平行四邊形,BD⊥AD,BD=AD,AB=2,四邊形ABEF為正方形,且平面ABEF⊥平面ABCD.
(1)求證:BD⊥平面ADF;
(2)若M為CD中點(diǎn),證明:在線段EF上存在點(diǎn)N,使得MN∥平面ADF,并求出此時(shí)三棱錐N-ADF的體積.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

8.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程是y=$\frac{4}{3}$x,則該雙曲線的離心率是( 。
A.$\frac{5}{4}$B.$\frac{5}{3}$C.$\frac{7}{3}$D.$\frac{\sqrt{21}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案