13.如圖,三棱錐P-ABC的體積為12,D為PB中點(diǎn),且EF$\stackrel{∥}{=}$MN$\stackrel{∥}{=}$$\frac{1}{2}$AC,則三棱柱BEF-DMN的體積為$\frac{9}{2}$

分析 由條件可知E,F(xiàn),M,N為棱錐P-ABC的對(duì)應(yīng)邊的中點(diǎn),于是棱柱的底面積為棱錐底面積的$\frac{1}{4}$,高為棱錐的$\frac{1}{2}$.

解答 解:∵EF$\stackrel{∥}{=}$MN$\stackrel{∥}{=}$$\frac{1}{2}$AC,∴MN,EF為△PAC,△ABC的中位線,
∴S△BEF=$\frac{1}{4}{S}_{△ABC}$,D到平面ABC的距離h為P到底面距離的$\frac{1}{2}$.
∵VP-ABC=$\frac{1}{3}{S}_{△ABC}•2h=12$,∴S△ABC•h=18.
∴VBEF-DMN=S△BEF•h=$\frac{1}{4}{S}_{△ABC}•h$=$\frac{9}{2}$.
故答案為:$\frac{9}{2}$.

點(diǎn)評(píng) 本題考查了棱錐,棱柱的體積計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1、F2,若橢圓上存在一點(diǎn)P使得∠F1PF2=90°,且|PF1|是|PF2|和|F1F2|的等差中項(xiàng),則橢圓的離心率e為( 。
A.$\frac{5}{7}$B.$\frac{2}{3}$C.$\frac{4}{5}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.隨機(jī)變量X的分布列如下,則m=( 。
X1234
P$\frac{1}{4}$m$\frac{1}{3}$$\frac{1}{6}$
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,三棱柱ABC-A1B1C1中,D,M分別為CC1和A1B的中點(diǎn),A1D⊥CC1,側(cè)面ABB1A1為菱形且∠BAA1=60°,AA1=A1D=2,BC=1,
(Ⅰ)證明:直線MD∥平面ABC;
(Ⅱ)求二面角B-AC-A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程是y=$\frac{4}{3}$x,則該雙曲線的離心率是( 。
A.$\frac{5}{4}$B.$\frac{5}{3}$C.$\frac{7}{3}$D.$\frac{\sqrt{21}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.過(guò)雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a>0,b>0)的右焦點(diǎn)F作x軸的垂線,交雙曲線于A、B兩點(diǎn),若雙曲線的左頂點(diǎn)C在以AB為直徑的圓的內(nèi)部,則此雙曲線離心率e的取值范圍是( 。
A.($\frac{1+\sqrt{5}}{2},+∞$)B.($\frac{1+\sqrt{5}}{2},2$)C.(2,+∞)D.(1,$\frac{1+\sqrt{5}}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.P是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)上的一點(diǎn),F(xiàn)1,F(xiàn)2是焦點(diǎn),PF1與漸近線平行,∠F1PF2=90°,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.從重量分別為1,2,3,4,…,10,11克的砝碼(每種砝碼各一個(gè))中選出若干個(gè),使其總重量恰為9克的方法總數(shù)為m,下列各式的展開式中x9的系數(shù)為m的選項(xiàng)是(  )
A.(1+x)(1+x2)(1+x3)…(1+x11
B.(1+x)(1+2x)(1+3x)…(1+11x)
C.(1+x)(1+2x2)(1+3x3)…(1+11x11
D.(1+x)(1+x+x2)(1+x+x2+x3)…(1+x+x2+…+x11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知直角梯形ABCD中,AD⊥AB,AB∥DC,AB=2,DC=3,E為AB的中點(diǎn),將四邊形AEFD沿EF折起使面AEFD⊥面EBCF,過(guò)E作EF∥AD,
(1)若G為DF的中點(diǎn),求證:EG∥面BCD;
(2)若AD=2,試求多面體AD-BCFE體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案