分析 由條件可知E,F(xiàn),M,N為棱錐P-ABC的對(duì)應(yīng)邊的中點(diǎn),于是棱柱的底面積為棱錐底面積的$\frac{1}{4}$,高為棱錐的$\frac{1}{2}$.
解答 解:∵EF$\stackrel{∥}{=}$MN$\stackrel{∥}{=}$$\frac{1}{2}$AC,∴MN,EF為△PAC,△ABC的中位線,
∴S△BEF=$\frac{1}{4}{S}_{△ABC}$,D到平面ABC的距離h為P到底面距離的$\frac{1}{2}$.
∵VP-ABC=$\frac{1}{3}{S}_{△ABC}•2h=12$,∴S△ABC•h=18.
∴VBEF-DMN=S△BEF•h=$\frac{1}{4}{S}_{△ABC}•h$=$\frac{9}{2}$.
故答案為:$\frac{9}{2}$.
點(diǎn)評(píng) 本題考查了棱錐,棱柱的體積計(jì)算,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{7}$ | B. | $\frac{2}{3}$ | C. | $\frac{4}{5}$ | D. | $\frac{\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
X | 1 | 2 | 3 | 4 |
P | $\frac{1}{4}$ | m | $\frac{1}{3}$ | $\frac{1}{6}$ |
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{4}$ | B. | $\frac{5}{3}$ | C. | $\frac{7}{3}$ | D. | $\frac{\sqrt{21}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{1+\sqrt{5}}{2},+∞$) | B. | ($\frac{1+\sqrt{5}}{2},2$) | C. | (2,+∞) | D. | (1,$\frac{1+\sqrt{5}}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1+x)(1+x2)(1+x3)…(1+x11) | |
B. | (1+x)(1+2x)(1+3x)…(1+11x) | |
C. | (1+x)(1+2x2)(1+3x3)…(1+11x11) | |
D. | (1+x)(1+x+x2)(1+x+x2+x3)…(1+x+x2+…+x11) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com