相關(guān)習題
 0  229738  229746  229752  229756  229762  229764  229768  229774  229776  229782  229788  229792  229794  229798  229804  229806  229812  229816  229818  229822  229824  229828  229830  229832  229833  229834  229836  229837  229838  229840  229842  229846  229848  229852  229854  229858  229864  229866  229872  229876  229878  229882  229888  229894  229896  229902  229906  229908  229914  229918  229924  229932  266669 

科目: 來源: 題型:解答題

10.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,PA⊥底面ABCD,M是棱PD的中點,且PA=AB=AC=2,BC=2$\sqrt{2}$.
(Ⅰ)求證:CD⊥平面PAC;
(Ⅱ)N是棱AB中點,求直線CN與平面MAB所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

9.函數(shù)f(x)=x2+ax-alnx.
(1)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)a>1時,求函數(shù)f(x)在[1,a]上的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知函數(shù)$f(x)=2\sqrt{2}sin\frac{1}{8}xcos\frac{1}{8}x+2\sqrt{2}{cos^2}\frac{1}{8}x-\sqrt{2}$,x∈R.
(1)求函數(shù)f(x)的頻率和初相;
(2)在△ABC中,角A、B、C所對邊的長分別是a、b、c,若$f(A)=\sqrt{3}$,$C=\frac{π}{4}$,c=2,求△ABC的面積.

查看答案和解析>>

科目: 來源: 題型:填空題

7.二次函數(shù)f(x)=-x2+bx+c的圖象和x軸交于A,B兩點,若以AB為直徑的圓與f(x)的圖象切于頂點P點,若P點的橫坐標是x0,則f(x0)=1.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知F1,F(xiàn)2分別是橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點,P是橢圓E上的點,且PF2⊥x軸,$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=\frac{1}{16}{a^2}$.直線l經(jīng)過F1,與橢圓E交于A,B兩點,F(xiàn)2與A,B兩點構(gòu)成△ABF2
(1)求橢圓E的離心率;
(2)設△F1PF2的周長為$2+\sqrt{3}$,求△ABF2的面積的最大值.

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x+y-1≤0\\ x-y+1≥0\\ y≥-1\end{array}\right.$,則$\frac{y}{x-3}$的最小值為$-\frac{1}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.關(guān)于函數(shù)$f(x)=3sin(2x-\frac{π}{3})+1(x∈R)$,下列命題正確的是(  )
A.由f(x1)=f(x2)=1可得x1-x2是π的整數(shù)倍
B.y=f(x)的表達式可改寫成$y=3cos(2x+\frac{π}{6})+1$
C.y=f(x)的圖象關(guān)于點$(\frac{π}{6},1)$對稱
D.y=f(x)的圖象關(guān)于直線$x=\frac{3}{4}π$對稱

查看答案和解析>>

科目: 來源: 題型:選擇題

3.下列各命題中正確的是(  )
①若命題“p或q”為真命題,則命題“p”和命題“q”均為真命題;
②命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”;
③“x=4”是“x2-3x-4=0”的充分不必要條件;
④命題“若m2+n2=0,則m=0且n=0”的否命題是“若m2+n2≠0,則m≠0且n≠0”.
A.②③B.①②③C.①②④D.③④

查看答案和解析>>

科目: 來源: 題型:解答題

2.設f(x)=xlnx.
(1)求f′(x);
(2)設0<a<b,求常數(shù)c,使得$\frac{1}{b-a}\int_a^b{|lnx-c|dx}$取得最小值;
(3)記(2)中的最小值為Ma,b,證明Ma,b<ln2.

查看答案和解析>>

科目: 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,已知PA⊥平面ABCD,AD∥BC,AD⊥CD,PA=$\sqrt{2}$,AD=1,BC=2,CD=$\sqrt{3}$,M,N分別為AB,PC的中點.
(Ⅰ)求證:MN⊥平面PCD;
(Ⅱ)求直線PC與平面PAB所成角的大。

查看答案和解析>>

同步練習冊答案