相關習題
 0  231012  231020  231026  231030  231036  231038  231042  231048  231050  231056  231062  231066  231068  231072  231078  231080  231086  231090  231092  231096  231098  231102  231104  231106  231107  231108  231110  231111  231112  231114  231116  231120  231122  231126  231128  231132  231138  231140  231146  231150  231152  231156  231162  231168  231170  231176  231180  231182  231188  231192  231198  231206  266669 

科目: 來源: 題型:選擇題

11.設命題p:函數(shù)f(x)=e2x-3在R上為增函數(shù);命題q:?x0∈R,x02-x0+2<0.則下列命題中真命題是( 。
A.p∧qB.(¬p)∨qC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目: 來源: 題型:選擇題

10.給出如下四個命題:
①命題“關于x的不等式$\frac{1-x}{1+x}$≥0的解集為{x|x<-1或x≥1}”為真命題;
②命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
③命題“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1”;
④“m<$\frac{1}{4}$”是“方程x2+x+m=0有實數(shù)解”的必要不充分條件.
其中假命題的個數(shù)是( 。
A.4B.3C.2D.1

查看答案和解析>>

科目: 來源: 題型:選擇題

9.5 個人站成一排,甲乙兩人必須站在一起的不同站法有( 。
A.12 種B.24 種C.48 種D.60 種

查看答案和解析>>

科目: 來源: 題型:選擇題

8.如圖,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),點P是橢圓上位于第一象限的點,點F為橢圓的右焦點,且|OP|=|OF|,設∠FOP=α且α∈[$\frac{π}{6}$,$\frac{π}{3}$],則橢圓離心率的取值范圍為(  )
A.[$\sqrt{3}$-1,$\frac{2}{3}$]B.[2-$\sqrt{3}$,$\frac{\sqrt{6}}{3}$]C.[$\sqrt{3}$-1,$\frac{\sqrt{6}}{3}$]D.[2-$\sqrt{3}$,$\frac{2}{3}$]

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(m,2m-1),若向量$\overrightarrow{a}$與$\overrightarrow$共線,則實數(shù)m=2.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.設x,y均為正實數(shù),則當($\frac{1}{x}$+$\frac{1}{y}$)(4x+y)取得最小值時,$\frac{y}{x}$=( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

科目: 來源: 題型:選擇題

5.如圖,已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),過原點的直線與橢圓交于A、B兩點,點F為橢圓的右焦點,且滿足AF⊥BF,設∠ABF=α,且α∈[$\frac{π}{12}$,$\frac{π}{6}$],則橢圓離心率e的取值范圍為( 。
A.[$\sqrt{3}$-1,$\frac{2}{3}$]B.[$\sqrt{3}$-1,$\frac{\sqrt{6}}{3}$]C.[2-$\sqrt{3}$,$\frac{2}{3}$]D.[2-$\sqrt{3}$,$\frac{\sqrt{6}}{3}$]

查看答案和解析>>

科目: 來源: 題型:解答題

4.某學校課題組為了研究學生的數(shù)學成績和物理成績之間的關系,隨機抽取高二年級20名學生某次考試成績,列出如下所示2×2列聯(lián)表:
數(shù)學成績
物理成績
 優(yōu)秀不優(yōu)秀合計
優(yōu)秀527
不優(yōu)秀11213
合計61420
(1)根據(jù)題中表格的數(shù)據(jù)計算,你有多少的把握認為學生的數(shù)學成績與物理成績之間有關系?
(2)若按下面的方法從這20人(序號1,2,3,…,20)中抽取1人來了解有關情況:將一個標有數(shù)字1,2,3,4,5,6的正六面體骰子連續(xù)投擲兩次,記朝上的兩個數(shù)字的乘積為被抽取人的序號.
試求:①抽到12號的概率;②抽到“無效序號(序號大于20)”的概率.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目: 來源: 題型:填空題

3.已知直線l過點P(2,2),且直線l在兩坐標軸上的截距互為相反數(shù),則直線l的方程為x-y=0.

查看答案和解析>>

科目: 來源: 題型:填空題

2.$\frac{{sin(π-α)cos(2π-α)tan(-α+\frac{3}{2}π)}}{cot(-α-π)sin(-π+α)}$=cosα.

查看答案和解析>>

同步練習冊答案