相關(guān)習(xí)題
 0  231236  231244  231250  231254  231260  231262  231266  231272  231274  231280  231286  231290  231292  231296  231302  231304  231310  231314  231316  231320  231322  231326  231328  231330  231331  231332  231334  231335  231336  231338  231340  231344  231346  231350  231352  231356  231362  231364  231370  231374  231376  231380  231386  231392  231394  231400  231404  231406  231412  231416  231422  231430  266669 

科目: 來源: 題型:填空題

19.函數(shù)f(x)=cos2x的周期是π.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知數(shù)列{an}滿足an>0且an=$\frac{{2a}_{n+1}}{1{-a}_{n+1}^{2}}$(n∈N*),證明:an+1<$\frac{1}{2}$an(n∈N*

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知a>0,且a≠1,函數(shù)$f(x)=\frac{5{a}^{x}+3}{{a}^{x}+1}+ln(\sqrt{1+4{x}^{2}}-2x)(-1≤x≤1)$,設(shè)函數(shù)f(x)的最大值為M,最小值為N,則( 。
A.M+N=8B.M+N=10C.M-N=8D.M-N=10

查看答案和解析>>

科目: 來源: 題型:選擇題

16.設(shè)f(x)=ex,g(x)=1+lnx,若存在x1、x2∈[$\frac{1}{2}$,1]恒有|f(x1)g(x2)-f(x2)g(x1)|≥af(x1+x2),則a的最大值為( 。
A.e-1-(1-ln2)e${\;}^{-\frac{1}{2}}$B.ln$\frac{e}{2}$-e-1C.ln2-e-1D.(1-ln2)e${\;}^{-\frac{1}{2}}$-e-1

查看答案和解析>>

科目: 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=b+ax-ex,其中a,b為實數(shù),e=2.71828….
(Ⅰ)當(dāng)b=0時,求曲線y=f(x)在點(0,f(0))處的切線方程;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,1]上的最大值;
(Ⅲ)若函數(shù)g(x)=f(x)+$\frac{1}{2}$ax2+(b-a)x-b+1,g(1)=0,且g(x)在(0,1)內(nèi)有零點,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=nlnx-$\frac{e^x}{e^n}$+2016,n為大于零的常數(shù).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若$x∈({0,\frac{{{t^2}+({2n-1})t}}{2}}),t∈({0,2})$,求函數(shù)f(x)的極值點;
(Ⅲ)觀察f(x)的單調(diào)性及最值,證明:ln$\frac{{{n^2}+1}}{n^2}<\frac{{{e^{\frac{1}{n}}}-1}}{n}$.

查看答案和解析>>

科目: 來源: 題型:填空題

13.已知f(x)是奇函數(shù),且當(dāng)x>0時,f(x)=2x+x,若函數(shù)g(x)=f(x)-log2a在[-2,2]上有零點,則a的取值范圍是$[\frac{1}{64},\frac{1}{2})∪(2,64]∪\{1\}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.在矩形ABCD中,|AB|=3,|AC|=5,$\overrightarrow{{e}_{1}}$=$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$,$\overrightarrow{{e}_{2}}$=$\frac{\overrightarrow{AD}}{|\overrightarrow{AD}|}$,若$\overrightarrow{AC}$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$,則x+y的值為( 。
A.2B.4C.5D.7

查看答案和解析>>

科目: 來源: 題型:選擇題

11.如圖為一半徑是4米的水輪,水輪圓心O距離水面1米,已知水輪每分鐘旋轉(zhuǎn)5圈,水輪上的點P到水面的距離y(米)與時間x(秒)滿足函數(shù)關(guān)系y=Asin(ωx+φ)+1,則(  )
A.$ω=\frac{π}{6},A=4$B.$ω=\frac{2π}{15},A=3$C.$ω=\frac{π}{6},A=5$D.$ω=\frac{2π}{15},A=4$

查看答案和解析>>

科目: 來源: 題型:選擇題

10.若函數(shù)f(x)=x2+$\frac{2}{x}$-alnx(a>0)有唯一零點x0,且m<x0<n(m,n為相鄰整數(shù)),則m+n的值為( 。
A.1B.3C.5D.7

查看答案和解析>>

同步練習(xí)冊答案