相關(guān)習(xí)題
 0  231263  231271  231277  231281  231287  231289  231293  231299  231301  231307  231313  231317  231319  231323  231329  231331  231337  231341  231343  231347  231349  231353  231355  231357  231358  231359  231361  231362  231363  231365  231367  231371  231373  231377  231379  231383  231389  231391  231397  231401  231403  231407  231413  231419  231421  231427  231431  231433  231439  231443  231449  231457  266669 

科目: 來源: 題型:填空題

8.設(shè)向量$\overrightarrow{a}$=(cos25°,sin25°),$\overrightarrow$=(cos25°,sin155°),則$\overrightarrow{a}$•$\overrightarrow$的值為1.

查看答案和解析>>

科目: 來源: 題型:填空題

7.若集合E={(x,y,z)|0≤x<z≤3,0≤y<z≤3,x,y,z∈N},F(xiàn)={(p,q,r)|0≤p<q<r≤3,p,q,r∈N},用card(X)表示的集合X中的元素個數(shù),則card(E)+card(F)=18.

查看答案和解析>>

科目: 來源: 題型:解答題

6.設(shè)f(x)是一元二次函數(shù)g(x)=2x•f(x),且g(x+1)-g(x)=2x+1•x2,求f(x)與g(x).

查看答案和解析>>

科目: 來源: 題型:解答題

5.張老師進行教學(xué)改革實驗,甲班用“模式一”進行教學(xué),乙班用“模式二”進行教學(xué),經(jīng)過一段時間后,兩班用同一套試卷進行測試(滿分100 分),按照優(yōu)秀(大于或等于90 分)和非優(yōu)秀(90 分以下)統(tǒng)計成績,得到如下2×2列聯(lián)表:
優(yōu)秀非優(yōu)秀合計
甲班10
乙班26
合計90
已知在兩個班總計90人中隨機抽取1人為優(yōu)秀的概率為$\frac{4}{15}$.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d).
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(1)請完成上面的2×2列聯(lián)表;
(2)根據(jù)2×2列聯(lián)表的數(shù)據(jù),判斷能否有95%以上的把握認為“成績優(yōu)秀與教學(xué)模式有關(guān)”;
(3)若甲班成績優(yōu)秀的10 名同學(xué)中,男生有6 名,女生有4 名,現(xiàn)從這10 名同學(xué)中選2 名學(xué)生參加座談,求其中至少含1 名女生的概率.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.一名小學(xué)生的年齡和身高(單位:cm)的數(shù)據(jù)如下表:
年齡x6789
身高y118126136144
由散點圖可知,身高y與年齡x之間的線性回歸方程為$\stackrel{∧}{y}$=8.8$\stackrel{∧}{x}$+a,則a的值為( 。
A.65B.74C.56D.47

查看答案和解析>>

科目: 來源: 題型:解答題

3.畫出函數(shù)y=$\frac{x+3}{x+2}$的圖象.

查看答案和解析>>

科目: 來源: 題型:填空題

2.在數(shù)列{an}中,若a1=6,an+1=3an+3n+1,(n∈N*),則an=2n•3n

查看答案和解析>>

科目: 來源: 題型:解答題

1.設(shè)關(guān)于某產(chǎn)品的明星代言費x(百萬元)和其銷售額y(百萬元),有如表的統(tǒng)計表格:
i12345合計
xi(百萬元)1.261.441.591.711.827.82
wi(百萬元)2.002.994.025.006.0320.04
yi(百萬元)3.204.806.507.508.0030.00
$\overline{x}$=1.56,$\overline{w}$=4.01,$\overline{y}$=6,$\sum_{i=1}^{5}$xiyi=48.66,$\sum_{i=1}^{5}$wiyi=132.62,$\sum_{i=1}^{5}$(xi-$\overline{x}$)2=0.20,$\sum_{i=1}^{5}$(wi-$\overline{w}$)2=10.14
其中${ω_i}=x_i^3(i=1,2,3,4,5)$.
(1)在坐標系中,作出銷售額y關(guān)于廣告費x的回歸方程的散點圖,根據(jù)散點圖指出:y=a+blnx,y=c+dx3哪一個適合作銷售額y關(guān)于明星代言費x的回歸類方程(不需要說明理由);
(2)已知這種產(chǎn)品的純收益z(百萬元)與x,y有如下關(guān)系:x=0.2y-0.726x(x∈[1.00,2.00]),試寫出z=f(x)的函數(shù)關(guān)系式,試估計:當明星代言費x在什么范圍內(nèi)取值時,純收益z隨明星代言費z的增加而增加?(以上計算過程中的數(shù)據(jù)統(tǒng)一保留到小數(shù)點第2位)
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘法估計值為:$\widehat{β}$=$\frac{\sum_{i=1}^{n}{u}_{i}{v}_{i}-n\overline{u}•\overline{v}}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

查看答案和解析>>

科目: 來源: 題型:填空題

20.如圖正方形BCDE的邊長為a,已知AB=$\sqrt{3}$BC,將△ABE 沿BE邊折起,折起后A點在平面BCDE上的射影為D點,則翻折后的幾何體中有如下描述:
①AB與DE所成角的正切值是$\sqrt{2}$;
②AB∥CE;
③VB-ACE的體積是$\frac{1}{6}$a2;
④平面ABC⊥平面ADC;
其中正確的有①④(填寫你認為正確的序號)

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)=|x-a|+|x-2a|.
(Ⅰ)對任意x∈R,不等式f(x)>1成立,求實數(shù)a的取值范圍;
(Ⅱ)當a=-1時,解不等式f(x)<3.

查看答案和解析>>

同步練習(xí)冊答案