相關(guān)習(xí)題
 0  231324  231332  231338  231342  231348  231350  231354  231360  231362  231368  231374  231378  231380  231384  231390  231392  231398  231402  231404  231408  231410  231414  231416  231418  231419  231420  231422  231423  231424  231426  231428  231432  231434  231438  231440  231444  231450  231452  231458  231462  231464  231468  231474  231480  231482  231488  231492  231494  231500  231504  231510  231518  266669 

科目: 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,AB⊥AD,BC=$\frac{2\sqrt{3}}{3}$,AB=1,BD=PA=2,M 為PD的中點.
(Ⅰ) 求異面直線BD與PC所成角的余弦值;
(Ⅱ)求二面角A-MC-D的平面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,E是BC的中點,F(xiàn)是棱CD上的動點,G為C1D1的中點,H為A1G的中點.
( I)當點F與點D重合時,求證:EF⊥AH;
( II)設(shè)二面角C1-EF-C的大小為θ,試確定點F的位置,使得sin θ=$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

8.設(shè)橢圓E1的長半軸長為a1、短半軸長為b1,橢圓E2的長半軸長為a2、短半軸長為b2,若$\frac{{a}_{1}}{{a}_{2}}$=$\frac{_{1}}{_{2}}$,則我們稱橢圓E1與橢圓E2是相似橢圓.已知橢圓E:$\frac{x^2}{2}$+y2=1,其左頂點為A、右頂點為B.
(1)設(shè)橢圓E與橢圓F:$\frac{x^2}{s}$+$\frac{y^2}{2}$=1是“相似橢圓”,求常數(shù)s的值;
(2)設(shè)橢圓G:$\frac{x^2}{2}$+y2=λ(0<λ<1),過A作斜率為k1的直線l1與橢圓G只有一個公共點,過橢圓E的上頂點為D作斜率為k2的直線l2與橢圓G只有一個公共點,求|k1k2|的值;
(3)已知橢圓E與橢圓H:$\frac{x^2}{2}$+$\frac{y^2}{t}$=1(t>2)是相似橢圓.橢圓H上異于A、B的任意一點C(x0,y1),且橢圓E上的點M(x0,y2)(y1y2>0)求證:AM⊥BC.

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖,直三棱柱ABC-A1B1C1的底面為正三角形,E、F分別是BC、CC1的中點.
(1)證明:平面AEF⊥平面B1BCC1;
(2)若D為AB中點,∠CA1D=45°且AB=2,求三棱錐F-AEC的表面積.

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖,弦AB與CD相交于圓O內(nèi)一點E,過E作BC的平行線與AD的延長線交于點P,且PD=2DA.
(1)求證:△PED∽△PAE;
(2)若PE=2$\sqrt{6}$,求PA長.

查看答案和解析>>

科目: 來源: 題型:解答題

5.有40名高校應(yīng)屆畢業(yè)生參加某招工單位應(yīng)聘,其中甲組20人學(xué)歷為碩士研究生,乙組20人學(xué)歷是本科,他們首先參加筆試,統(tǒng)計考試成績得到的莖葉圖如圖(滿分100分),如果成績在86分以上(含86分)才可以進入面試階段
(1)現(xiàn)從甲組中筆試成績在90分及其以上的同學(xué)隨機抽取2名,則至少有1名超過95分同學(xué)的概率;
(2)通過莖葉圖填寫如表的2×2列聯(lián)表,并判斷有多大把握認為筆試成績與學(xué)歷有關(guān)?.
本科生研究生合計
能參加面試
不能參加面試
合計
下面臨界值表僅供參考
P(K2≥k00.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246,6357.87910.828
參考公式:K2=$\frac{{n{{(ac-bd)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目: 來源: 題型:解答題

4.AC是圓O的直徑,BD是圓O在點C處的切線,AB、AD分別與圓O相交于E,F(xiàn),EF與AC相交于M,N是CD中點,AC=4,BC=2,CD=8
(Ⅰ)求AF的長;
(Ⅱ)證明:MN平分∠CMF.

查看答案和解析>>

科目: 來源: 題型:解答題

3.如圖,已知直四棱柱ABCD-A1B1C1D1,DD1⊥底面ABCD,底面ABCD為平行四邊形,∠DAB=45°,且AD,AB,AA1三條棱的長組成公比為$\sqrt{2}$的等比數(shù)列,
(1)求異面直線AD1與BD所成角的大;
(2)求二面角B-AD1-D的大。

查看答案和解析>>

科目: 來源: 題型:解答題

2.如圖,△ABC為⊙O的內(nèi)接三角形,D,E分別為BC,AB的中點,直線DE交圓O于F,G,且直線DE與過A點的切線交于點P,DF=1,DE=2,PE=3.
(1)求證:△PEA~△BDE;
(2)求線段PA的長.

查看答案和解析>>

科目: 來源: 題型:解答題

1.(1)已知f(x)=lnx-ax2,求f(x)的單調(diào)區(qū)間;
(2)若f(x)≤0對x>0上恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案