相關(guān)習(xí)題
 0  231349  231357  231363  231367  231373  231375  231379  231385  231387  231393  231399  231403  231405  231409  231415  231417  231423  231427  231429  231433  231435  231439  231441  231443  231444  231445  231447  231448  231449  231451  231453  231457  231459  231463  231465  231469  231475  231477  231483  231487  231489  231493  231499  231505  231507  231513  231517  231519  231525  231529  231535  231543  266669 

科目: 來源: 題型:解答題

17.已知曲線Γ上的點P到點F(0,1)的距離比它到x軸的距離多1.
(Ⅰ)求曲線Γ的方程;
(Ⅱ)記曲線Γ在x軸上方的部分為曲線C,過點M(0,2)任作一直線與曲線C相交于A、B兩點,過點B作y軸的平行線與直線AO相交于點D(O為坐標原點),求點D的軌跡.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知曲線C上任意一點P(x,y)到點F(1,0)的距離比到直線x+2=0的距離小1.
(1)求曲線C的方程;
(2)過x軸上一點Q作直線l與曲線C交于A,B兩點,問是否存在定點Q使$\frac{1}{Q{A}^{2}}$+$\frac{1}{Q{B}^{2}}$為定值,求出點Q的坐標,若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知動點P到直線l:x=-1的距離等于它到圓C:x2+y2-4x+1=0的切線長(P到切點的距離),記動點P的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)點Q是直線l上的動點,過圓心C作QC的垂線交曲線E于A,B兩點,問是否存在常數(shù)λ使得|AC|•|BC|=λ|OC|2?若存在,求出λ的值,若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

14.在平面直角坐標系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,且右準線方程為x=4.
(1)求橢圓的標準方程;
(2)設(shè)P(x1,y1),M(x2,y2)(y2≠y1)是橢圓C上的兩個動點,點M關(guān)于x軸的對稱點為N,如果直線PM,PN與x軸交于(m,0)和(n,0),問m•n是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

13.如圖:已知PA=PB,∠APB=2∠ACB,AC與PB交于點D,若PB=4,PD=3,AD=5,則DC=$\frac{7}{5}$.

查看答案和解析>>

科目: 來源: 題型:解答題

12.在直角三角形ABC中,∠CAB=$\frac{π}{2}$,AB=2,AC=$\frac{\sqrt{2}}{2}$,DO垂直AB于點O[其中O為原點],且D(0,2),OA=OB,曲線E過C點,一點P在C上運動,且滿足|PA|+|PB|的值不變.
(1)求曲線E的方程;
(2)過點D的直線L與曲線E相交于不同的兩點M,N,且M在NB之間,使$\frac{DM}{DN}$=λ,試確定實數(shù)λ的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

11.橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$ 的上頂點為P,$Q({\frac{4}{3},\frac{3}})$ 是C上的一點,以PQ為直徑的圓經(jīng)過橢圓C的右焦點F.
(1)求橢圓C的方程;
(2)過橢圓C的右焦點F且與坐標不垂直的直線l交橢圓于A,B兩點,在直線x=2上是否存在一點D,使得△ABD為等邊三角形?若存在,求出直線l的斜率;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知動點P到直線l:x=-1的距離等于它到圓C:x2+y2-4x+1=0的切線長(P到切點的距離),記動點P的軌跡為曲線E
(Ⅰ)求曲線E的方程;
(Ⅱ)點Q是直線l上的動點,過圓心C作QC的垂線交曲線E于A,B兩點,設(shè)AB的中點為D,求$\frac{|QD|}{|AB|}$的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知橢圓C的中心在原點,焦點F1,F(xiàn)2在軸上,焦距為2,離心率為$\frac{1}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若P是橢圓C上第一象限內(nèi)的點,△PF1F2的內(nèi)切圓的圓心為I,半徑為$\frac{1}{2}$.求:
(i)點P的坐標;
(ii)直線PI的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的兩焦點為${F_1}({-\sqrt{2},0}),{F_2}({\sqrt{2},0})$,且過點$Q(\sqrt{2},\;1)$
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點P(0,2)的直線l交橢圓于M,N兩點,以線段MN為直徑的圓恰好過原點,求出直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案