相關習題
 0  231402  231410  231416  231420  231426  231428  231432  231438  231440  231446  231452  231456  231458  231462  231468  231470  231476  231480  231482  231486  231488  231492  231494  231496  231497  231498  231500  231501  231502  231504  231506  231510  231512  231516  231518  231522  231528  231530  231536  231540  231542  231546  231552  231558  231560  231566  231570  231572  231578  231582  231588  231596  266669 

科目: 來源: 題型:解答題

13.已知兩圓x2+y2=1和(x-1)2+(y-1)2=1.求:
(1)兩圓的公共弦所在直線的方程;
(2)公共弦所在直線被圓C:x2+y2-2x-2y-$\frac{17}{4}$=0所截得的弦長.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.函數(shù)f(x)=2x+x-2的零點所在區(qū)間是( 。
A.(-∞,-1)B.(-l,0)C.(0,1)D.(1,2)

查看答案和解析>>

科目: 來源: 題型:填空題

11.若函數(shù)f(x)=x2(x-2)2-a|x-1|+a有4個零點,則a的取值范圍為{-$\frac{32}{27}$}∪(-1,0)∪(0,+∞).

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖,正四棱錐P-ABCD的底面邊長為2,側(cè)棱長為$\sqrt{10}$,點O為底面ABCD的中心.
(1)求證:PA⊥BD;
(2)若E為PC中點,求BE的長.

查看答案和解析>>

科目: 來源: 題型:填空題

9.在三棱錐P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,則當△AEF的面積最大時,BC=$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

8.正四棱錐的底面面積為4,高為3,設它的側(cè)棱與底面所成的角為α,則sinα=$\frac{3\sqrt{11}}{11}$.

查看答案和解析>>

科目: 來源: 題型:解答題

7.某學校研究性學習小組對該校高三學生視力情況進行調(diào)查,在高三的全體1000名學生中隨機抽取了100名學生的體檢表,并得到如圖直方圖:
(Ⅰ)若直方圖中后四組的頻數(shù)成等差數(shù)列,試估計全年級視力在5.0以下的人數(shù);
(Ⅱ)學習小組成員發(fā)現(xiàn),學習成績突出的學生,近視的比較多,為了研究學生的視力與學習成績是否有關系,對年級名次在1~50名和951~1000名的學生進行了調(diào)查,得到如下數(shù)據(jù):
是否近視1~50951~1000合計
年級名次
近視413273
不近視91827
合計5050100
根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.05的前提下認為視力與學習成績有關系?
(Ⅲ)在(Ⅱ)中調(diào)查的100名學生中,按照分層抽樣在不近視的學生中抽取了9人,進一步調(diào)查他們良好的護眼習慣,并且在這9人中任取3人,記名次在1~50名的學生人數(shù)為X,求X的分布列和數(shù)學期望.
P(K2≥k)0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
n=a+b+c+d.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知函數(shù)f(x)=|x+sin2θ|,g(x)=2|x-cos2θ|,θ∈[0,2π],且關于x的不等式2f(x)≥a-g(x)對?x∈R恒成立.
(1)求實數(shù)a的最大值m;
(2)若正實數(shù)a,b,c滿足a+2b+3c=2m,求a2+b2+c2的最小值.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.如圖,在長方體ABCD-A1B1C1D1中,AB=1,BC=$\sqrt{3}$,點M在棱CC1上,且MD1⊥MA,則當△MAD1的面積最小時,棱CC1的長為( 。
A.$\frac{3}{2}$$\sqrt{2}$B.$\frac{\sqrt{10}}{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

4.設函數(shù)f(x)=ax2-(2a-1)x-lnx,其中a∈R.
(Ⅰ)當a>0時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當a<0時,求函數(shù)f(x)在區(qū)間[$\frac{1}{2}$,1]上的最小值;
(Ⅲ)記函數(shù)y=f(x)的圖象為曲線C,設點A(x1,y1),B(x2,y2)是曲線C上不同的兩點,點M為線段AB的中點,過點M作x軸的垂線交曲線C于點N,試判斷曲線C在N處的切線是否平行于直線AB?并說明理由.

查看答案和解析>>

同步練習冊答案