7.某學校研究性學習小組對該校高三學生視力情況進行調查,在高三的全體1000名學生中隨機抽取了100名學生的體檢表,并得到如圖直方圖:
(Ⅰ)若直方圖中后四組的頻數(shù)成等差數(shù)列,試估計全年級視力在5.0以下的人數(shù);
(Ⅱ)學習小組成員發(fā)現(xiàn),學習成績突出的學生,近視的比較多,為了研究學生的視力與學習成績是否有關系,對年級名次在1~50名和951~1000名的學生進行了調查,得到如下數(shù)據(jù):
是否近視1~50951~1000合計
年級名次
近視413273
不近視91827
合計5050100
根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.05的前提下認為視力與學習成績有關系?
(Ⅲ)在(Ⅱ)中調查的100名學生中,按照分層抽樣在不近視的學生中抽取了9人,進一步調查他們良好的護眼習慣,并且在這9人中任取3人,記名次在1~50名的學生人數(shù)為X,求X的分布列和數(shù)學期望.
P(K2≥k)0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
n=a+b+c+d.

分析 (Ⅰ)由頻率分布直方圖可知:分布求得第一到第六組的頻數(shù),求得視力在5.0以的頻率為1-0.08=0.82,全年級5.0以上的人數(shù)為1000×0.82=820;
(Ⅱ)求出K2,與臨界值比較,K2≈4.110>3.841.由此能求出在犯錯誤的概率不超過0.05的前提下認為視力與學習成績有關系.
(Ⅲ)依題意9人中年級名次在1~50名和951~1000名分別有3人和6人,X可取0、1、2、3,分別求出相應在的概率,由此能求出X的分布列和X的數(shù)學期望.

解答 解:(Ⅰ)由圖可得:前三組的頻率分別為:0.03,0.07,0.27,
∴第一組有3人,第二組7人,第三組有27人,
后四組頻數(shù)成等差數(shù)列,
∴后四組的頻數(shù)27,24,21,18,
∴所以視力在5.0以的頻率為1-0.08=0.82,
所以全年級5.0以上的人數(shù)為1000×0.82=820;
(Ⅱ)K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{100×(41×18-32×9)^{2}}{50×50×73×27}$≈4.110>3.841.
因此,在犯錯的概率不超過0.05的前提下認為視力與學習成績有關系;
(Ⅲ)由題意可知9人中年級名次在1-50名和951-1000名的人數(shù)分別為3人和6人,
∴X的取值為0,1,2,3,
P(X=0)=$\frac{{C}_{6}^{3}}{{C}_{9}^{3}}$=$\frac{5}{21}$,
P(X=1)=$\frac{{C}_{6}^{2}{C}_{3}^{1}}{{C}_{9}^{3}}$=$\frac{15}{28}$,
P(X=2)=$\frac{{C}_{6}^{1}{C}_{3}^{2}}{{C}_{9}^{2}}$=$\frac{3}{14}$,
P(X=3)=$\frac{{C}_{3}^{3}}{{C}_{9}^{3}}$=$\frac{1}{84}$,
X的分布列為:

 X 0
 P $\frac{5}{21}$ $\frac{15}{28}$ $\frac{3}{14}$ $\frac{1}{84}$
∴E(X)=0×$\frac{5}{21}$+1×$\frac{15}{28}$+2×$\frac{3}{14}$+3×$\frac{1}{84}$=1,
E(X)=1.

點評 本題考查直方圖,考查獨立性檢驗的應用,考查求X的分布列和數(shù)學期望,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.函數(shù)y=($\frac{1}{3}$)${\;}^{2{x}^{2}-3x+1}$的單調遞增區(qū)間為(  )
A.(1,+∞)B.(-∞,$\frac{3}{4}$]C.($\frac{1}{2}$,+∞)D.[$\frac{3}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.求方程2${\;}^{{x}^{2}+x}$=8x+1的根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知正三棱錐的底面邊長為3,高為h,若正三棱錐的側面積與體積的比為4$\sqrt{3}$,則正三棱錐的高為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.正三棱錐的底面邊長為a,側棱與底面所成的角為60°,求正三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)f(x)=2x+x-2的零點所在區(qū)間是( 。
A.(-∞,-1)B.(-l,0)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.把一個含45°角的直角三角板BEF和一個正方形ABCD疊放在一起,使三角板的直角頂點和正方形的頂點B重合,點E,F(xiàn)分別在正方形的邊CB,AB上,易知:AF=CE,AF⊥CE.(如圖1)(不要證明)
(1)將圖1中的直角三角板BEF繞點B順時針旋轉α度(0<α<45),連接AF,CE,(如圖2),試證明:AF=CE,AF⊥CE.
猜想與發(fā)現(xiàn):
(2)將圖2中的直角三角板BEF繞點B順時針繼續(xù)旋轉,使BF落在BC邊上,連接AF,CE,(如圖3),點M,N分別為AF,CE的中點,連接MB,BN.
①MB,BN的數(shù)量關系是相等;
②MB,BN的位置關系是垂直.
變式與探究:
(3)圖1中的直角三角板BEF繞點B順時針旋轉180°,點M,N分別為DF,EF的中點,連接MA,MN,(如圖4),MA,MN的數(shù)量關系、位置關系又如何?為什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=ax3-3x2+1(a>0),g(x)=lnx
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)用max{m,n}表示m,n中的最大值.設函數(shù)h(x)=max{f(x),g(x)}(x>0),討論h(x)零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.下列說法中正確的是( 。
A.命題“若a>b>0,則$\frac{1}{a}$<$\frac{1}$”的逆命題是真命題
B.命題p:?x∈R,x2-x+1>0,則¬p:?x0∈R,x02-x0+1<0
C.“a>1,b>1”是“ab>1”成立的充分條件
D.在某項測量中,測量結果x服從正態(tài)分布N(1,σ2)(σ>0),若x在(0,1)內取值的概率為0.4,則x在(0,2)內取值的概率為0.6

查看答案和解析>>

同步練習冊答案