相關(guān)習(xí)題
 0  232133  232141  232147  232151  232157  232159  232163  232169  232171  232177  232183  232187  232189  232193  232199  232201  232207  232211  232213  232217  232219  232223  232225  232227  232228  232229  232231  232232  232233  232235  232237  232241  232243  232247  232249  232253  232259  232261  232267  232271  232273  232277  232283  232289  232291  232297  232301  232303  232309  232313  232319  232327  266669 

科目: 來源: 題型:選擇題

19.在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是棱A1B1,B1C1的中點,O是AC與BD的交點,面OEF與面BCC1B1相交于m,面OD1E與面BCC1B1相交于n,則直線m,n的夾角為(  )
A.0B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,所有棱長都相等,若該三棱柱的頂點都在球O的表面上,且三棱柱的體積為$\frac{9}{4}$,則球O的表面積為7π.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.若c>1,0<b<a<1,則(  )
A.ac<bcB.bac<abcC.alogbc<blogacD.logac<logbc

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=x3+ax.
(Ⅰ)當x=1時,f(x)=x3+ax有極小值,求a的值;
(Ⅱ)若過點P(1,1)只有一條直線與曲線y=f(x)相切,求a的取值范圍;
(Ⅲ)在(Ⅰ)的條件下,判斷過點A(0,3),B(2,0),C(-2,-2)分別存在幾條直線與曲線y=f(x)相切.(只需寫出結(jié)論)

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA=AD,PA⊥AB,N是棱AD的中點.
(Ⅰ)求證:平面PAB⊥平面PAD;
(Ⅱ)求證:PN⊥平面ABCD;
(Ⅲ)在棱BC上是否存在動點E,使得BN∥平面DEP?并說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知f(x)=|x-1|+|x-a|(a∈R).
(1)若a=3,求不等式f(x)≥4的解集;
(2)對?x1∈R,有f(x1)≥2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

13.某工廠欲加工一件藝術(shù)品,需要用到三棱錐形狀的坯材,工人將如圖所示的長方體ABCD-EFQH材料切割成三棱錐H-ACF.
(Ⅰ)若點M,N,K分別是棱HA,HC,HF的中點,點G是NK上的任意一點,求證:MG∥平面ACF;
(Ⅱ)已知原長方體材料中,AB=2,AD=3,DH=1,根據(jù)藝術(shù)品加工需要,工程師必須求出該三棱錐的高;甲工程師先求出AH所在直線與平面ACF所成的角θ,再根據(jù)公式h=AH•sinθ求三棱錐H-ACF的高h.請你根據(jù)甲工程師的思路,求該三棱錐的高.

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,在斜三棱柱ABC-A1B1C1中,點O、E分別是A1C1、AA1的中點,AO⊥平面A1B1C1.已知∠BCA=90°,AA1=AC=BC=2.
(1)證明:OE∥平面AB1C1;
(2)證明:AB1⊥A1C;
(3)求A1C1與平面AA1B1所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

11.空氣污染,又稱為大氣污染,是指由于人類活動或自然過程引起某些物質(zhì)進入大氣中,呈現(xiàn)出足夠的濃度,達到足夠的時間,并因此危害了人體的舒適、健康和福利或環(huán)境的現(xiàn)象.全世界也越來越關(guān)注環(huán)境保護問題.當空氣污染指數(shù)(單位:μg/m3)為0~50時,空氣質(zhì)量級別為一級,空氣質(zhì)量狀況屬于優(yōu);當空氣污染指數(shù)為50~100時,空氣質(zhì)量級別為二級,空氣質(zhì)量狀況屬于良;當空氣污染指數(shù)為100~150時,空氣質(zhì)量級別是為三級,空氣質(zhì)量狀況屬于輕度污染;當空氣污染指數(shù)為150~200時,空氣質(zhì)量級別為四級,空氣質(zhì)量狀況屬于中度污染;當空氣污染指數(shù)為200~300時,空氣質(zhì)量級別為五級,空氣質(zhì)量狀況屬于重度污染;當空氣污染指數(shù)為300以上時,空氣質(zhì)量級別為六級,空氣質(zhì)量狀況屬于嚴重污染.2015年8月某日某省x個監(jiān)測點數(shù)據(jù)統(tǒng)計如表:
空氣污染指數(shù)(單位:μg/m3[0,50](50,100](100,150](150,200]
監(jiān)測點個數(shù)1540y10
(1)根據(jù)所給統(tǒng)計表和頻率分布直方圖中的信息求出x,y的值,并完成頻率分布直方圖;
(2)在空氣污染指數(shù)分別為50~100和150~200的監(jiān)測點中,用分層抽樣的方法抽取5個監(jiān)測點,從中任意選取2個監(jiān)測點,事件A“兩個都為良”發(fā)生的概率是多少?

查看答案和解析>>

科目: 來源: 題型:選擇題

10.若向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(-1,-1),則4$\overrightarrow{a}$+2$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角等于(  )
A.-$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

同步練習(xí)冊答案